
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

31-01-2008
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

17 July 2006 - 04 February 2009

5a. CONTRACT NUMBER
FA8655-06-1-3073

5b. GRANT NUMBER
 Grant 06-3073

4. TITLE AND SUBTITLE

Negotiation based deconfliction in air-traffic control

5c. PROGRAM ELEMENT NUMBER

61102F
5d. PROJECT NUMBER

5d. TASK NUMBER

6. AUTHOR(S)

Michal Pechoucek
David Sislak
Premysl Volf
Stepan Kopriva
Jiri Samek

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Czech Technical University
Agent Technology Group, Gerstner Laboratory -- CTU, FEE-K333
Technicka 2
Prague 6 166 27
Czech Republic

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
Unit 4515 BOX 14
APO AE 09421

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

Grant 06-3073

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report results from a contract tasking Czech Technical University as follows: The Grantee will investigate development of a model and
software prototype an autonomous embedded UAV air traffic deconfliction demonstration..
This project leverages results of previously implemented project (funded as FA8655-04-1-3044-P00001) that resulted in an A-globe multi-
agent system deployment in the domain of air-traffic control. Within the proposed project we intend to integrate the previously implemented
technology with state-of-the-art deconfliction methods and provide empirical evaluation of various approachesand to generalize the
deconfliction and related data-collection technology to allow deconfliction with non-cooperative aerial objects.

15. SUBJECT TERMS
EOARD, Multi Agent Systems, Command and Control, Computer Modelling

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
JAMES LAWTON Ph. D.
 a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS

17. LIMITATION OF
ABSTRACT

SAR

18, NUMBER
OF PAGES

148 19b. TELEPHONE NUMBER (Include area code)

+44 (0)1895 616187

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

January 15, 2008 FA8655-06-1-3073 Extension Final Report

Project extension of the FA8655-06-1-3073 contract:
Final Report January 2008

this is a final project report to extension of the FA8655-06-1-3073 contract and it provides technical information about
the work on the project

Michal PěchoučekPI, Přemysl Volf,
David Šǐslák, Štěpán Kopřiva

Agent Technology Group, Gerstner Laboratory,
Czech Technical University in Prague

1

January 15, 2008 FA8655-06-1-3073 Extension Final Report

Contents

1 Executive Summary 3

2 Review of Existing Algorithms for Air Traffic Collision Avoidance 4

2.1 Hill’s Algorithm . 5

3 Extended Iterative Peer-to-Peer Collision Avoidance Algorithm 6

3.1 Original Algorithm . 6

3.2 Extension with tendencies . 8

3.3 Extension with Near Misses Optimization . 9

4 Theoretical Analysis 10

4.1 Landing scenario . 10

4.2 Assumptions and Objectives of the Model . 11

4.3 Formal Proof of Convergence . 12

4.4 Estimations and Restrictions . 16

4.4.1 Limitation of the Shifts. 16

4.4.2 Using Global Optimum. 16

4.4.3 Different speeds. 17

5 Empirical Analysis 17

5.1 Pair Collision Analysis . 18

5.2 Landing Scenario Benchmarks . 19

5.3 Perpendicular Flows . 19

5.4 Circles . 21

5.5 Sphere . 22

A Monotonic concession protocol 22

2

January 15, 2008 FA8655-06-1-3073 Extension Final Report

1 Executive Summary

This document provides a final report of the FA8655-06-1-3073 project extension. The FA8655-
06-1-3073 dealt with deployment of multi-agent modeling for collective flight modeling and de-
velopment of distributed, agent-based collision avoidance methods. Properties of the methods
were experimentally tested within the AGENTFLY multi-agent system. The whole technology
and the progress of work has been described in the final report of the FA8655-06-1-3073 project
that is delivered together with this report. Hereafter we will refer to this report – final report of
FA8655-06-1-3073-extension and to the original report – final report of FA8655-06-1-3073-main.

The final report of FA8655-06-1-3073-main provides:

• detailed specification of the domain where multi-agent techniques has been applied,

• flight modeling and time-constrained way-point flight plan planning algorithm avoiding ground
surface and no-flight zones,

• description of the AGENTFLY prototype architecture including real-time visualization com-
ponent, remote web-based access and its integration with various external data sources,

• multiple operator agent interface providing human-system interface allowing real-time control
of UAAs,

• multi-layer collision avoidance architecture allowing simultaneous combination of cooperative
and non-cooperative collision avoidance methods,

• describes three implemented cooperative collision avoidance algorithms: rule-based, iterative
peer-to-peer and multi-party collision avoidance,

• provides description of non-cooperative collision avoidance based on the dynamic no-flight
zones,

• collective flight coordination architecture used for the synchronization of the group of UAAs
supporting flight in the formation as well as outer group-to-group negotiations

• basic set of the empirical experiments comparing all cooperative methods together, non-
cooperative no-flight zone method comparison to optimal proportional navigation algorithm

• specialized demo cases demonstrating benefits of the multi-party algorithm and validating the
concept of multi-layer collision avoidance architecture where the agent controlled airplanes
operate in the area with civil traffic,

• complex combat scenario used as a testing case for the mix of all features provided by
AGENTFLY in a very complex mission.

The main project has been extended during its performance by the following specific tasks:

• a theoretical study of the properties (and worst case scenarios) of the used deconfliction
mechanisms,

• thorough scalability tests providing the empirical properties of the used technology and com-
parison with the latest state-of-the-art,

• theoretical foundation for an extension of the investigated and developed deconfliction archi-
tecture towards team-oriented action and operation in adversarial environment

3

January 15, 2008 FA8655-06-1-3073 Extension Final Report

The work has been organized into four research targets. The indispensable research review,
prerequisite for the theoretical research work has been performed in the RT4 in the section 2. The
theoretical work, embedded in the RT1 has been performed subsequently in the section 4. The
scalability tests, that were grouped in the RT2 in the section 5, were implemented at the same
time as the theoretical work was carried out. In the RT3 we studied and designed deployment of
AGENTFLY technology in the collective flight concepts and in the adversarial and combat unit
deployment scenarios described in the sections Collective flight and Complex combat scenario in
the main report. All research targets have been fully achieved.

2 Review of Existing Algorithms for Air Traffic Collision Avoidance

The air traffic collision avoidance problem is a problem how to solve collisions of the airplanes
arising in the free flight concept [9]. Different methods solving this problem are described in this
section. We use multi-agent simulation system AGENTFLY described in the main report to solve
collision avoidance problem. For the formal verification and empirical experiments is used iterative
peer-to-peer collision avoidance (IPPCA) algorithm described in the section 3.

There are various collision avoidance metrics that compare functionality, efficiency, stability,
speed and other characteristics for every algorithm. These metrics suggest how appropriate is a
given algorithm for a given collision avoidance problem. Krozel proposes the following metrics
in [6]. The metrics measure properties of the system defined as a sum of the properties of all
airplanes. The stability compares number of collisions, when airplanes fly along their nominal
trajectory, to number of detected collisions after execution of the conflict resolution manoeuvres
of all airplanes. This metrics is suitable for algorithms that are not able to solve all collisions
and number of collisions after algorithm execution is comparable to a number of collisions before
algorithm execution. This metric is unsuitable for advanced algorithms (IPPCA algorithm, Hill’s
algorithm 2.1), where the number of collisions after execution of the conflict resolution manoeuvres
is zero for majority of the scenarios. Total number of collisions and minimal separation violations is
measured in this case. The efficiency is the degree to which an aircraft can fly its nominal trajectory.
Any deviation from the nominal for conflict resolution results in an additional operational cost (eg.
fuel consumption, time restrictions, length of the trajectory). The airspace complexity or dynamic
density is not defined precisely. However, number of airplanes in specified airspace is key factor.
There are also many other factors like velocity and space constrains, proximity to other airplanes
etc. We measure number of collisions, minimal separation violations and system efficiency in the
experiments 5.

To show described properties of the algorithms, we study the algorithms theoretically, perform
empirical behavior of the flight simulation or use some other AI methods (such as model-checking).
The formal verification of collision avoidance methods deployed for the complete collision avoidance
problem is a complex and difficult task. That is why researchers formally study only subtasks of
the collision avoidance problem.

To study collision avoidance problem as a system is suitable to use multi-agent simulation.
It allows to run complex scenarios and study nondeterministic behavior caused by asynchronous
events during the simulation. The verification is done by huge number of experiments to receive
sufficient statistical data.

Tomlin et al. [10] solve a problem of two noncooperative airplanes. They start with the
differential equations in the game theory used for intelligent vehicle systems. They determine safe
and unsafe regions for an airplane and the airplane can operate only on the boundary of its safe
region to optimize trajectory and other criteria. The implicit switching control law derived from

4

January 15, 2008 FA8655-06-1-3073 Extension Final Report

the solution to the game may be modeled by finite automata with differential equations associated
with each state, and the resultant hybrid system is safe by design.

Han et al. [3] use proportional navigation-based optimal collision avoidance algorithm. The
optimal proportional navigation algorithm tries to keep a predefined safe distance between an
airplane and an obstacle (non-cooperative one tracked on its on-board radar). This is achieved
by directing the airplane towards the edge of the safety zone and an appropriate acceleration.
If the airplane gets into such configuration with the obstacle in which no future collision exists,
the airplane control algorithm switches its mode from deconfliction to navigation towards the
destination point. This algorithm is able to avoid only one airplane/obstacle.

Krozel compares three different approaches to conflict resolution – one centralized and two
distributed methods [6] verified by simulation. Centralized strategy emphasizes stability of the
system by suppressing domino effect, but the system efficiency degrade with increasing traffic
density. Decentralized algorithms use myopic and look-ahead strategies. The myopic strategy
always selects the most efficient solution. If this manoeuvre creates a new conflict, it is resolved
in the next cycle. The look-ahead strategy also takes the most efficient solution, but takes into
consideration stability as well. It can select less efficient manoeuvre that does not decrease stability
so much as the most efficient one.

Agogino et al. [1] solve problem of the management of the air-traffic in USA, which is so
extensive that is not able represent as an agent each aircraft. Agents represent cells of the airspace
called ”fixes”. Each agent is responsible for each airplane going through its fix. Number and
position of agents is predefined. Each agent uses evolutionary algorithms to improve its ability
to control airplanes. Complex solution is composed from partial solution of the agents. Proposed
concept is tested in the FACET system and show 40% increase in performance.

Kosecka et al. use potential and vortex fields to solve collision up to four aircrafts [5]. Gener-
alized overtake and head-on manoeuvres may solve all two-aircrafts collisions. For more airplanes
they propose manoeuvre called roundabout. The results are verified by simulation of the algorithm.

Holdsworth et al. [4] models an escape trajectories generated by different algorithms using
Brisbane Model for the simulation. It uses tesselated space with aircraft’s position represented as
one tile. This model with probability and risk calculation is used to identify cases where algorithms
fail for further analysis.

Wangermann et al. [11] use principled negotiation to effectively coordinate distributed opti-
mization in both constrained and unconstrained situations as extension of the centralized system.

2.1 Hill’s Algorithm

We use Hill’s algorithm as a reference to the IPPCA algorithm. Selected perpendicular flows
scenario in the section 5.3 and circles scenario in the section 5.4 show comparison of the algorithms.

Hill et al. uses satisficing game theory, the concept based on the dual social utility, which is
composed of two parts – selectability and rejectability. The selectability characterize effectiveness
of the solution in reaching the goal regardless the cost of this solution. The rejectability describes
amount of resources, which are consumed to reach selected solution. The social value is normalized
to have mathematical structure of the mass function (but with different semantics). In the multi-
agent system, mass function is defined as multivariate mass function containing selectability and
rejectability for each agent. Structure of the mass function permits to define independence and
conditioning similar to probability theory. This definition allows to model situational altruism,

5

January 15, 2008 FA8655-06-1-3073 Extension Final Report

where agents are not pure altruists. The agents still follow strategy optimizing their utility, but
they are able to concede some of their preferences to another agents, if this concession will lead to
reasonable gain of the utility over all agents.

In the Hill’s implementation all airplanes fly at the same altitude and at the same constant
speed. The simulation is discretized (currently 1 second intervals) and each step is selected one of 5
possible heading changes (-5; -2.5; 0; 2.5; 5 degree). Each airplane ranks others airplane considering
distance, delay, flight. Airplanes are consecutively divided into subgroups in the following order:

• airplanes within fifty miles range and airplanes outside fifty miles range

• each group is ordered by accumulated delay

• airplanes with the same delay are divided according to how long they are in the air (longer
time has higher priority)

Each airplane builds acyclic graph representing influence flow from higher ranked airplanes to lower
ranked ones.

Each airplane compute its rejectability utility for each possible direction. Each airplane with
higher priority will leading to a collision will affected utility by predefined weight (collisions have
higher value than near misses). Selectability utility is influenced by the difference between selected
heading and heading to the destination. Each airplanes have to take into account selectability
utility of the higher ranked airplanes to get social utility. Both utilities are normalized.

Hill have developed two models - full model and simplified model. An airplane in the full model
tries to compute complete selectability of the higher ranked airplanes using its local incomplete
knowledge. This model improve overall performance, but is very complex. In the simplified model
are airplanes divided into five groups according to the possible heading changes. Number of
airplanes in each group is taken as a weight for the group.

Final decision is made according to whether the agent is risk averse or risk seeking. Risk averse
agents selects option with the lowest rejectability utility and risk seeking agent selects option
with the highest selectability utility. Hill have selected option with the highest difference between
selectability and rejectability utility for each airplane.

3 Extended Iterative Peer-to-Peer Collision Avoidance Algorithm

The iterative peer-to-peer collision avoidance algorithm (IPPCA) is a domain independent algo-
rithm that is used for collective collision avoidance by negotiating over domain dependent deconflic-
tion manoeuvres. The IPPCA algorithm is utility-based avoidance mechanism providing solution
for a pair of airplanes. Collisions of more than two airplanes at the same time (multi-collisions)
are solved iteratively.

3.1 Original Algorithm

Original version of the IPPCA algorithm is an extension of [12]. First, the participating airplanes
select the master and the slave entities for the detected collision (usually the first entity who
identifies a collision is regarded as a master entity). In the Figure 1 there is negotiation flow
between both participants.

6

January 15, 2008 FA8655-06-1-3073 Extension Final Report

Master Slave

request plan generation

generated plans

no
 v

al
id

 c
om

bi
na

ti
on generate

plans

apply
plan

apply
plan

generate
plans

find best
solution

send updates send updates

request plan change

Figure 1: The negotiation used by IPPCA algorithm

Each agent generates a set of plans using defined manoeuvres. All pre-defined manoeuvres also
allows to apply different level of changes depending on the generation parameter. The result of the
application of the manoeuvre is a new changed flight plan including utility value for this plan. This
new plan is checked for the safety zone violation against all other airplanes in the area (excluding
second airplane in the pair). If there is safety zone violation with any of these airplanes, new
plan is excluded. Otherwise it is put into list of generated manoeuvres. The generation parameter
during the generation process is used to get wider range of solutions in the situations when the
solution is not found using flight plans with smaller changes.

The utility function is used to include the aircraft’s intention to the proposed solutions of the
conflict. The utility value is evaluated as weighted sum of the utility function parts. Depending on
the configuration there can be components taking into consider total length of the flight plan, time
deviations for mission waypoints, altitude changes, curvature, flight priority, fuel status, possible
damage, type of load. Relative utility value exchanged between planes is computed as quotient
of new flight plan to original flight plan. Lower value of utility function suggest more preferred
deconfliction manoeuvre.

There are 7 parameterized manoeuvres used in the current version of IPPCA algorithm: straight
manoeuvre (no change to the flight plan), turn right, turn left, turn up, turn down, speed up and
slow down manoeuvre.

The best possible deconfliction manoeuvres is identified by a variation of the monotonic con-
cession protocol (MCP) [12] described in the appendix A. The monotonic concession protocol is a
simple protocol developed by Zlotkin and Resenschein for automated agent to agent negotiations
(see below). Instead of iterative comparison of the most preferred maneuvers of each party, the
complete ordered set o flight plans (and labeled by the utilities) are generated and sent back to the
master airplane. When the master entity generates its own plans and receives plans from the slave
entity, it tries to combine all plans together. The collision solution is then selected from cartesian
product of the generated plans from both participants. These candidates for solution are ordered
in increasing manner by product of utility quotients of flight plan pair. The order of the candidates

7

January 15, 2008 FA8655-06-1-3073 Extension Final Report

by the sum of their utilities optimize the social welfare. Each solution candidate is tested for a
collision between airplanes from this pair. If there is no collision between participants, candidate is
selected as collision solution. When there are more solution pairs with the same sort value without
collision, the the final solution is selected randomly from these. The slave entity is notified about
selected flight plan. This approach turns out to save substantial amount of communication and
consequently makes the solver more likely to provide a solution prior a possible collision.

If there is no collision-free pair in the cartesian product, it is necessary to generate different
wider flight plans and the request for generation of the new set of possible flight plans with greater
generation parameter for manoeuvres is sent to slave entity. The master entity generates its new set
of flight plans as well. This new plans are added to flight plans from previous round of generating
and the master will repeat to selection of the solution among all flight plans.

Original implementation of the IPPCA continues in increasing generation parameter to get
wider manoeuvres until solution is found or the CSM timeout elapses. CSM - Collision Solver
Manager is module in the AGENTFLY multi-layer architecture (see the main report in the Section
Multi-layer collision avoidance architecture) that manage collision avoidance modules. For each
collision is selected appropriate collision solver (e.g. IPPCA solver). The solver receives predefined
amount of time to solve the collision. When timeout elapses and no solution is found, both airplanes
in the pair keep their original flight plans. It can be set, whether collision is considered as solved
and no new negotiation is initiated or the collision should be detected again and new round of the
negotiation should run. This process can lead to continuous negotiation without any change of
the flight plan and collision of the airplanes. This situation can occur in scenarios with extreme
density of the airplanes at same time. Modification for these scenarios is introduced in subsection
3.3.

3.2 Extension with tendencies

We have developed extension of the original IPPCA algorithm for the most of the possible sce-
narios (excluding some specific scenario with extreme density, where results can be worse than
using original algorithm). This extension reduces number of iterations of negotiations, reduces the
necessary communication flow among airplanes and makes final flight plans more simple (lower
number of final segments). This advantage is allowed by slightly longer total trajectory of the
flight plans.

To reduce the number of iterations, it is applied following restrictions to the applicable evasion
manoeuvres. All seven defined manoeuvres are divided into four groups: (i) horizontal – right and
left evasion, (ii) vertical – climb up and descend down evasion, (iii) velocity – fly faster and slow
down evasion and (iv) straight – holding only the straight evasion. When the multi-collision is
detected, it has to be solved by several iterations of the IPPCA between airplane pairs included
in this multi-collision. For each airplane and each application of the evasion manoeuvre is saved
type of the evasion manoeuvre. Once the manoeuvre is applied from some group, it is not allowed
to use another type of the manoeuvres from this group until the multi-collision is solved (e.g once
it is used slow down manoeuvre for some airplane, the fly faster manoeuvre can’t be used for this
airplane until the multi-collision is solved). This extension reduces cases, when original algorithm
leads to series of application of the opposite manoeuvres from same group (turn left, right, left,
right, ...).

8

January 15, 2008 FA8655-06-1-3073 Extension Final Report

3.3 Extension with Near Misses Optimization

We have developed extension of the IPPCA algorithm (can be used together with tendencies) for
the specific scenarios or for the scenarios with extreme density of airplanes, where CSM timeout
could elapse before any solution respecting minimal separation is found. Original algorithm can
cancel negotiation (when CSM timeout elapses) and no changes to flight plans are applied, which
can lead to the collision of the airplanes. To avoid such situations, it can enabled feature minimizing
possibility of a the collision using airspace where minimal separation is violated, but still respecting
collision zones (zones where collision of the airplanes is simulated).

In this extension is set maximum size of the generation parameter during negotiation (this
parameter should be set to such value that does not limit possible solution and at the same time
generation of all plans have to finish before CSM timeout). When the algorithm reaches this
maximum and no solution respecting minimal separation is found, it tries to search for a solution
where the minimal separation is violated, but the violation is minimized and the collision zone
(where real collision is expected) is respected.

Implementation of this extension is optimized to reduce computation load, to spread out compu-
tation over whole negotiation and not to make huge computation when maximum of the generation
parameter is reached.The implementation of the algorithm differs form the original algorithm in
the following:

• during the phase when of the the new manoeuvres on the master and slave side
are generated for the first time (generation parameter equals 1)

Manoeuvre is added to the generation set even when violates minimal separation (but not
collision zone) with other airplanes. To each manoeuvre is assigned relative safety zone
violation (RSZV) value (<0;(1-relative collision zone size)>, zero is no violation to minimal
separation, 1-relative collision zone size means collision of the airplanes) as a maximum
violation over all airplanes (excluding other airplane in the pair).

• during the phase, when the master checks for possible solution from combinations
of the generated plans from master and slave

The combined RSZV for the combination of the master’s and slave’s plan is defined as the
maximum of the master plan’s RSZV, slave plan’s RSZV and minimal separation between
the master and the slave.

The minimal RSZV is the minimum of the combined RSZV over all combinations (initially
set to 1).

If the solution is found (combined RSZV==0), extended algorithm continues in the same
way like the original algorithm (solution selection and application). If the solution is not
found, all combinations created from plans with RSZV≤minimal RSZV are checked and new
minimal RSZV is set.

• during the phase when of the the new manoeuvres on the master and slave side
are generated during next iterations (generation parameter equals 1)

Manoeuvre is added to the generation set if the manoeuvre’s RSZV≤minimal RSZV (No need
to add manoeuvres with bigger safety zone violation than it has been reached in previous
iterations).

• during the phase, when the master checks for possible solution from the combi-
nations and the maximum of the generation parameter is reached

9

January 15, 2008 FA8655-06-1-3073 Extension Final Report

If the solution is not found (combined RSZV>0), it is not possible to continue to next
iteration. The master combines all plans (from both master and slave) with RSZV≤minimal
RSZV. As a solution is selected combination with minimal combined RSZV. In case there
are several combinations with the same combined RSZV, it is selected combination with best
aggregate utilities (similarly to original algorithm).

4 Theoretical Analysis

We show theoretical properties of the IPPCA algorithm described in the section 3.1. We formalize
the IPPCA algorithm and select extreme landing scenario with a high density of airplanes in a
limited area. We show theoretical properties, estimations and restrictions in this scenario. The
theoretical have been published in [7].

4.1 Landing scenario

Landing scenario contains n airplanes forced to fly from their starting positions through the single
landing point and follow straight part common to all airplanes simulating landing on an aircraft
carrier, see Figure 2. All airplanes fly at the same altitude and they cannot manoeuvre and avoid
collisions by changing their altitude. The airplanes have to arrange their times of arrival in such a
way, that no more than one airplane flies through the landing point at a time.

Figure 2: Landing scenario. Airplanes arrange their time of arrival to the landing point. Circle
around the airplane represents the safety zone.

By closer look at the scenario, we can see that in order to avoid collisions behind landing point,
all airplanes have to fly at the same speed to the landing point and then keep their speeds until
they reach the final way-point. The aircrafts will avoid collisions by careful arrangement of their
landing point arriving times and by keeping minimal distances from other aircrafts equal at least
to the safety zone size. Without loss of generality, we suppose only speed ups and slow downs are
allowed. Any other manoeuvre that would change airplane’s trajectory would result in different
time of arrival to the landing point and therefore it wouldn’t bring any additional possibility how
to avoid collision.

10

January 15, 2008 FA8655-06-1-3073 Extension Final Report

4.2 Assumptions and Objectives of the Model

We have built formal model of the landing scenario. This model should keep properties and
complexity of the simulated scenario, but it should also provide us with the possibility to use
formal methods to prove convergence.

The only important aspect of the model is the time of arrival of each airplane to the landing
point, thus all flights can be modeled as a intervals on the time axis representing airplane’s safety
zone, see Figure 3. As a simplification we regard starting position of each airplane only as time
needed to fly to the landing point using its original speed. Note that we loose information about
position of the airplanes. We do not know when and with the first collision occur in this model, so
the closest neighbor at the time axis does not need to be airplane with the soonest collision. Only
information is whether or not collision will occur.

 0 -6 -12 -18 -24

landing
point

Figure 3: Tunnel scenario modeled as time axis. Airplanes are on their starting positions. Over-
lapping airplanes will have a collision in the starting point.

We assume that at the beginning speed of all airplanes is identical and they will fly through the
landing point at this speed. Speed up and slow down manoeuvres are transformed to adjustments
of aircraft’s time of arrival to the landing point (time jumps). Thus speed up manoeuvre does
not mean, that airplane will increase its speed, but that it will arrive to the landing point sooner
maintaining its original speed. This can be done by speeding up for necessary time to gain time and
then slow down to the original speed. Slow down is defined in similar way. Denote shift forward
manoeuvre, when the flight time to the landing point is decreased and shift backward manoeuvre
when the flight time to the landing point is increased. We assume number of the shifts in either
way is not limited. Size of this zone is defined as the time needed to fly through the safety zone of
an aircraft at the original speed.

Utility function is defined as local optimization, this means that utility value is optimized for
each deconfliction separately. Every airplane remembers its actual position at the beginning of each
deconfliction and this position generates the best value of the function. Utility value is getting
worse with (time) distance from actual position in the same way in both directions. Thus every
airplane tries to minimize necessary change from its actual position. If several minimal choices are
possible, random solution is selected.

It is guaranteed that airplanes trust each other and offer true and reliable information. We also
assume that each airplane has access to the information about flight plans of all other airplanes.
We assume communication is parallel, but synchronous. Thus only negotiation of one pair can
be performed at a time. This prevents multiple changes of the flight plans and possible reverting
some of them. We assume communication is reliable.

11

January 15, 2008 FA8655-06-1-3073 Extension Final Report

4.3 Formal Proof of Convergence

Definition 1 (First (last) airplane) First (last) airplane is the airplane with the earliest (lat-
est) time of arrival to the landing point. If there are several airplanes with the earliest (latest)
time, all of them are considered as the first (last) airplane.

Definition 2 (State of the problem) State of the deconfliction problem is defined by positions
of all airplanes at the time axis.

Definition 3 (Step) One Step of the algorithm is the application of utility based negotiation to
pair of aircrafts and then the aircrafts perform appropriate changes (shifts) to their positions. One
step transforms one state to another.

Definition 4 (Cycle) Let’s define cycle as a sequence of the steps, where the state of the decon-
fliction problem is the same before and after the performance of these steps.

Definition 5 (Restricting neighbors) All airplanes are tagged by either restricting or non-
restricting tag for each deconfliction. Suppose an airplane A is trying to shift from its original
position to the new position p (to solve the collision c). Airplane X is marked as restricting for
the airplane A, collision c (its time) and the new position p, if airplane A can not solve collision
c by moving to the position p because collision with X would arise sooner then c. Otherwise (if
there is no collision taking place sooner than collision c, including no collision at all) the airplane
X is marked as non-restricting. Desired shift to the new position is allowed only if no restricting
airplane exists for this position.

Definition 6 (Constants and variables) Constants (C) are same all the time, variables (V)
can vary. Denote

• sz (C) as a size of safety zone measured in time units.

• d (V) as a distance (in time) between airplanes on the time axis, ie. difference in arrival
times of airplanes to the landing point.

• D (V) as a distance (in time) between the first and the last airplane.

• ms (C) as a manoeuvre step, minimal size of the shift forward or backward. Airplanes are
shifting only in multiplies of this value.

• ts(D) = D
ms (V) as a total number of positions between the arrival to the landing point of the

first and the last airplane.

• s(n,D) (V) as a number of all possible states between actual first and last airplane. s(n,D) =
ts(D)n

Lemma 1 The position of the first (last) airplane cannot be shifted backward (forward).

Proof. Airplane shifts forward or backward in time only as a result of a deconfliction. Conflict
for the first airplane can arise only with airplane with later time of arrival (from the definition).

12

January 15, 2008 FA8655-06-1-3073 Extension Final Report

 -52 -59

 -52 -59

 -52 -59

Figure 4: Deconfliction of the first airplane (grey). Original positions are drawn as dashed lines.

Suppose that the first airplane will shift backward. Figure 4 shows all possible changes of the
airplanes1.

In the first case, there is no reason for the first airplane (grey) to shift backward, because the
new utility value will be worse than utility value for its original place.

In the second case, airplanes switch their positions and second (white) airplane gets in front
of the grey one. Thus the white airplane is marked as new first airplane and thus position of the
first airplane is shifted forward.

In the third case, airplanes are switched, but white is still behind the original position of the
first airplane. Better change for the first airplane would be to shift forward instead of backward,
because it leads to the smaller change from its original position.

Also situation where two airplanes (both first) are solving their collision can appear. Although
even in this case there is no reason to shift both airplanes backward. This situation is analogous
to the first case. �

Lemma 2 Assume each airplane solves its soonest collision first, then cycle cannot arise.

Proof. We prove this lemma by contradiction. Assume that cycle exists. This cycle cannot contain
any collision free state, because algorithm would immediately stop and cycle wouldn’t be formed.
Therefore all states in the cycle contain a collision.

Each step of algorithm is a result of solving some collision. Denote c as a first collision being
solved in the first state of the cycle. Consequently after solving collision c and moving to the

1size of the safety zone is defined by larger lines at the time axis. It has size of 7 in this Figure.

13

January 15, 2008 FA8655-06-1-3073 Extension Final Report

second state collision c doesn’t exist any more. No collision can arise sooner or in the same time
as a result of a deconfliction (as a property of the utility based algorithm). No state after second
state can contain collision c and therefore the first and the last state is not same. �

Implication 3 D has to be increased after (2n− 1) · s(n,D) steps by at least ms.

Proof. As a result of Lemma 2 after exhausting all possible states (s(n,D) steps) without solving
collisions either the first or the last airplane has to shift. Lemma 1 proves that the first airplane
can shift only forward and the last airplane can shift only backward. Thus the distance between
these airplanes D has to be increased.

How long does it take to increase D for at least ms? Suppose only shifting of the first airplane
forward after s(n,D) steps. Let’s mark the first airplane as airplane A. The position of the first
airplane can be shifted forward in two different ways. Firstly, airplane A shifts forward for the
minimal step ms, therefore the implication holds.

Secondly, other airplane (airplane B) shifts in front of the airplane A and is marked as new
first airplane. Distance between the original position of first airplane A and the new position of
first airplane B can be lower than ms and thus insufficient. After n takeovers of the leader, at
least one airplane has to be in lead twice and therefore this airplane moved at least for ms, which
shows that implication holds.

Let’s allow also shifts of the last airplane backward. Position of the last airplane can change
at most n− 1 times without increasing the D by ms.

Since each shift of the first/last position is performed after maximum of s(n,D) and there can’t
be more than n− 1 on each side without increasing the D for ms, the lemma is proved. �

Lemma 4 (Maximal separation) As a result of the single deconfliction, the distance between
any two neighboring (on the time axis) airplanes cannot be increased to value greater than

d ≤ 2 · sz +ms

Proof. Assume two airplanes are solving their collision. Algorithm starts by each airplane
generating its possible future positions. Several situation can occur.

In the first case, new positions are not restricted by any other aircraft and changes can be
applied. After the deconfliction the distance between airplanes will stay d < sz +ms.

In the second case, an aircraft restricting its movement at one side exists therefore airplanes
will use space on the other side to solve the collision and the distance will stay d < sz +ms.

In the third case, there are restricting aircrafts at both sides of both airplanes, see Figure 5.
Two black circles at the Figure shows restricting aircrafts closest to the pair of airplanes in collision.

Distance between restricting aircrafts is lower than 3 · sz and thus there is not enough space
to solve deconfliction in between these aircrafts without arising collision with one of them. The
situation is solved by extending the shift of the airplane in the conflict to reach position behind
restricting aircraft(s). You can see two different cases at the Figure 5.

In the first situation, the distance between black aircrafts is bigger than 2 · sz +ms, thus one
of the airplanes (grey in our case) will jump over the restricting aircraft. Now white airplane has

14

January 15, 2008 FA8655-06-1-3073 Extension Final Report

 -30 -36 -42 -48 -54

 -30 -36 -42 -48 -54

Figure 5: Figure shows deconfliction of the airplanes (grey and white), that are restricted by
another (black ones). Deconflicting airplanes cannot shift their position closer than sz to any
black airplane.

enough space to find the best position between restricting aircrafts. It will hold minimal separation
of sz between white and black airplanes and thus maximal distance between any two airplanes is
not increased over 2 · sz +ms.

In the second situation, no airplane from pair of airplanes in the conflict can stay between
black aircrafts. But this also means that distance between restricting aircrafts is not bigger than
2 · sz +ms. Otherwise there would be enough space for one airplane to stay between them. �

Implication 5 Minimal distance D ensuring collision free state (where distance between any two
airplanes is at least sz) is

Dmin(n) = (n− 2)(2 · sz +ms) + sz

Optimal (shortest) distance D, to reach collision free state, is

Dopt(n) = (n− 1) · sz

Proof. Collision does not exist between any two airplanes, if the distance between them is at least
sz. Lemma 4 says, that distance between any two airplanes cannot be increased to distance greater
than 2 ·sz+ms. Thus minimal distance D, that guarantees the distance between any two airplanes
to be at least sz, is Dmin(n) ≤ (n− 2)(2 · sz +ms) + sz.

Distance between any two airplanes have to be at least sz. Thus minimal space to hold all
airplanes without collisions is Dopt(n) = (n− 1)sz. �

Theorem 6 (Convergence) Collision free state for all airplanes is reached within finite amount
of algorithm steps.

Proof. Implication 3 shows that D has to be increased after finite amount of steps for at least
nonzero distance. Implication 5 proves that Dmin(n) is sufficient to collision free state for all
airplanes. Thus all collisions are solved within finite amount of the algorithm steps. �

15

January 15, 2008 FA8655-06-1-3073 Extension Final Report

Theorem 7 (The worst case estimation) Collision free state is reached in maximum

acs(n,D) ≤
Dmin(n)∑
i=D

(2n− 1)(
i

ms
)n

steps, where D is the distance between the first and the last airplane in the initial state and sum
step is ms.

Proof. (2n − 1) · s(n,D) = (2n − 1) · ts(D)n steps is needed at maximum to increase D at least
for ms. This number of steps has to be added for every change of distance (using the step ms)
between the first and the last airplane from the initial D to the Dmin when collision free state is
guaranteed. �

4.4 Estimations and Restrictions

We proved convergence of the problem in previous section. In this section, we will make further
analysis. We specify distance of the airplanes from the landing point necessary to solve all collisions,
and prove convergence under the assumption that a global optimum exists and remove constrains
of constant speed.

4.4.1 Limitation of the Shifts.

We assume number of shifts forward or backward is unlimited though this presumption is stronger
than it is actually needed. The distance between the first and the last airplane is not greater than
Dmin(n) = (n− 2)(2 · sz+ms) + sz. Thus aggregated number of steps in either way is limited for
every airplane and is equal to Dmin(n)

ms .

To determine the minimal distance from the starting position to the landing point for each
airplane only overall maximal time shift of an airplane is necessary. This maximal time shift
is equal to Dmin(n). Denote vorig as original, vmax as maximal, vmin as minimal speed of the
airplane. Suppose vmin < vorig < vmax and ignore acceleration and deceleration. Then minimal
time distance from the landing point to have enough time to shift forward (speed up) is tfwd(n) =
vmaxDmin(n)
vmax−vorig

and to shift backward (slow down) is tback(n) = vminDmin(n)
vorig−vmin

. Therefore minimal
time distance to have enough time to avoid collisions is tmin(n) = max(tfwd(n), tback(n)) and
corresponding space distance is dmin(n) = tmin(n) · vorig.

4.4.2 Using Global Optimum.

Another presumption was that the utility function was defined only as local optimization. This
condition is used in lemma 1, to show desired selection of the manoeuvres. We show that utility
function can also select solutions with regard to global optimal value. With the new utility function
lemma 1 is not valid any more. The difference is shown at the Figure 6. In the original definition
dashed green airplane (on the left) had no reason to move from its position. But with global
optimum placed more at left side, green airplane will shift to the new position (solid circle).

Lemma 1 is used in implication 3 although it can be proved even without it. Using lemma 2
we know, that D has to be increased or stay the same in which case the whole interval on time

16

January 15, 2008 FA8655-06-1-3073 Extension Final Report

local
optimum

global
optimum

Figure 6: Figure shows different selection of the manoeuvres considering local and global optimum.

axis containing all airplanes have to be shifted after s(n,D) steps. Shift of the whole can occur
only when the first (last) airplane has its global optimum behind (in front of) its actual position.
Thus actual interval has to contain global optimum of at least one airplane. Denote Dorig as the
longest distance between any two global optimums (usually corresponding to starting positions).
Size of the time interval, where all airplanes has to be at any time, is 2Dmin + Dorig (airplanes
can be shifted to the side no more than Dmin times). As we already proved cycle cannot exist
and therefore position of the interval containing all airplanes on the time axis cannot repeat. Thus
number of possible positions for the interval is finite and convergence of the algorithm holds.

4.4.3 Different speeds.

We suppose all airplanes have the same original speed and they do not changed it. Same speed is
needed to guarantee same size of (time) safety zone as a necessary condition to safely land. What
will change, if we permit different speed at the starting points, any where during the flight and
disregard scenario with the landing and think just about flight plans with single intersection?

In this case airplanes can fly through this point with different speeds and therefore all airplanes
have to know speeds of each other to determine size of a safety zone for each airplane. Algorithm
used to solve a collision of a pair of airplanes remains the same, we just need to take into consid-
eration changing safety zones. This allows us also to introduce airplanes with different sizes of the
safety zone and with different minimum and maximum speeds.

We can use different airplanes to flight together and use distributed deconfliction algorithm,
but then we need to redefine some variables. Minimum (maximum) speed has to be defined as
the lowest (highest) speed among all airplanes. sz is defined as a minimum over all airplanes of
time needed to fly with minimum speed over its safety zone. With these changes all computations
mentioned above are valid.

5 Empirical Analysis

All experiments has been carried out using the framework for airspace domain simulations AGENT-
FLY described in main report. We denote original algorithm as the IPPCA ver1 algorithm and the
algorithm extended with tendencies as the IPPCA ver2. For the experiment scenarios stated in this
section we have prepared necessary configurations and special collectors for gathering necessary
properties of the algorithm and provide their comparison.

17

January 15, 2008 FA8655-06-1-3073 Extension Final Report

5.1 Pair Collision Analysis

The pair collision experiment is used to study behavior of the IPPCA algorithm for two airplanes.
It is measured type of used manoeuvre types for the collisions under different angles, see the Figure
7.

Both airplanes start at the surface of the sphere and follow straight lines across the center
to the other side of the sphere. The nominal flight trajectories cross each other in the center.
The first airplane (represented by the big red dot) flies from the constant starting position at the
sphere. The second airplane starts from positions generated in 5-degree interval. In the horizontal
direction is the range from 0 to 360 degrees (72 different positions), in the vertical direction is the
range from -20 to +20 degrees (7 different positions). Each configuration is run 10 times. The
utility value is optimizing length of the trajectories.

Figure 7: Pairs scenario. Red dot represents direction of the first airplane. The other dots
represents the direction of the second airplane. The color specifies type of used manoeuvres.

The manoeuvres are divided into three groups – turn left and right manoeuvres as the horizontal
manoeuvres, ascend and descend manoeuvres as the vertical manoeuvres and speed up and slow
down manoeuvres as the speed manoeuvres. The colors depicted in the Figure 7 shows combinations
of the manoeuvre type for the both airplanes in the following way:

• cyan - vertical + vertical manoeuvres

• green - horizontal + horizontal manoeuvres

• blue - velocity + velocity manoeuvres

• yellow - horizontal + vertical manoeuvres

• magenta - horizontal + velocity manoeuvres

18

January 15, 2008 FA8655-06-1-3073 Extension Final Report

5.2 Landing Scenario Benchmarks

The estimations given by theoretical work described in the Section 4 have been tested in a landing
scenario with a high density of airplanes in a limited area described in the section 4.1.

In the simulated scenario all airplanes start at the same distance from the landing point and
thus each airplane has possible collision with all others. The parameters of the simulated airplanes
are: the safety zone 0.5 nmi and the cruise speed 500 knots. The distance from the landing point is
taken from the estimation given in subsection 4.4.1 for each experiment. The experiment is tested
for 2 to 60 airplanes, 20 repeats per each run.

0

100

200

300

400

500

600

700

800

900

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Number of Airplanes

Nu
m

be
r o

f F
lig

ht
 P

la
n

Ch
an

ge
s

IPPCA ver1
IPPCA ver2

Figure 8: Landing scenario. Number of applied flight plan changes over all airplanes.

None of the experiments records any collision or violation of the minimal separation. Charts
in the Figures 8 and 9 show comparison of both IPPCA version. In the Chart 9, we can see the
theoretical estimation and optimum of the maximal time difference between the first and the last
airplane in the worst case. The IPPCA ver1 follows linearity of the estimation and is closer to the
optimum difference. The IPPCA ver2 reaches slightly worse results in the time difference needed
to solve the problem, but has markedly better results in the number of iterations (number of the
applied flight plan changes).

5.3 Perpendicular Flows

The perpendicular flows experiment and circles experiment 5.4 compare results of the IPPCA
algorithm to Hill’s algorithm 2.1. The configuration is adjusted to follow Hill’s description. The
IPPCA algorithm is limited to use only turn left and turn right manoeuvres without any change
of the speed or altitude.

19

January 15, 2008 FA8655-06-1-3073 Extension Final Report

0

100

200

300

400

500

600

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Number of Airplanes

Ti
m

e
Di

ffe
re

nc
e

be
tw

ee
n

th
e

Fi
rs

t a
nd

 th
e

La
st

 A
irp

la
ne

IPPCA ver1
IPPCA ver2
Estimation ver1
Optimal

Figure 9: Landing scenario. Time difference between time of arrival of the first and the last
airplane.

Near misses (violation of the minimal separation) and system efficiency is measured in all
experiments. System efficiency measures the degree to which the airplane follow its nominal flight
path [6]. In following experiments the airplanes have linear flight paths and they fly at the same
constant speed. Thus the system efficiency can be computed as the rate of the time needed to fly
over nominal and real trajectory.

Perpendicular flows scenario is made by two perpendicular linear flows of airplanes. Each
Airplane flies at constant speed 500 knots and keeps to avoid violation of the 5 nmi separation
distance. Airplanes are aware of all other airplanes within 100 nmi. Airplanes are generated each
40 seconds which preserves about 5.5 nmi distance between each pair of generated airplanes to
allow heading changes without immediate violation of the safety zones, see The Figure 10.

The stream of airplanes is interrupted by inserted gaps. A size of the gap is 80 seconds, this
means that one airplane is missing in the stream. The average number of airplanes (µ) in the
consecutive string without a gap is shown in table 1. At Hill’s experiments, the string length is
a uniform random variable with distribution U(µ2 ,

3µ
2). We use IPPCA ver1 in this scenario and

we regularly replace each µth airplane by the gap. The results are averaged over ten different
simulation runs, each modeling a 24 hour period.

Table 1 reports results of the perpendicular flow experiment - corresponding number of flights in
Hill and IPPCA period and comparison of the number of the near misses and the system efficiency.
We can see that IPPCA algorithm reaches better results in number of the near misses while it
preserves slightly better system efficiency. This results are given by possibility of the IPPCA
algorithm to apply bigger heading changes than 5 degrees.

20

January 15, 2008 FA8655-06-1-3073 Extension Final Report

Figure 10: Flows scenario. Simulation for a gap after each 5 airplanes.

Dist. Flights Near misses Efficiency %
(µ) Hill IPPCA Hill IPPCA Hill IPPCA
4 2732 3240 61 0.1 99.4 99.5
8 3366 3780 378 2.8 98.1 98.7
12 3629 3960 626 5.75 97.1 98.0
16 3767 4050 796 9.6 96.4 97.9
20 3860 4104 1011 11.9 95.4 97.6

const. 4217 4320 1847 31.2 92.3 96.0

Table 1: Comparison of the Hill’s and IPPCA algorithm using perpendicular flow scenario.

5.4 Circles

The circle scenario experiment compares the IPPCA algorithm to the Hill’s algorithm as described
in the section 5.3.

21

January 15, 2008 FA8655-06-1-3073 Extension Final Report

Airplanes in the circle scenario are composed in circle with radius 50 nmi. Each airplane’s
destination is at the circle exactly opposite to the starting point, thus the nominal flight path
coincide at the center of the circle, see the Figure 11. The parameters of airplanes remain same as
in the previous scenario. The experiment is tested for 2 to 32 airplanes, 20 repeats per each run.

We measure both variation of the IPPCA algorithm in this scenario. The charts in the Figures
12 and 13 show better results in number of near misses but also worse results in the system
efficiency. The number of near misses for 32 airplanes does not follow previous values, because the
scenario turns to the scenario with extreme density. These results are given by longer flight paths
leading to lower number of separation violations.

5.5 Sphere

The sphere scenario extends the circle scenario described in the section 5.4. It enables full range
of manoeuvres including speed and altitude changes. The airplanes are positioned in three layers
on the sphere. Middle layer corresponds to the circle scenario. Airplanes at the top layer fly to
opposite point of the bottom layer and vice versa. Thus all nominal trajectories intersect in the
center of the sphere.

We preserve the minimal separation of the airplanes at 5 nmi and enlarge radius of the sphere
to 100 nmi to have enough space for experiments with high density. Nominal slope of the trajectory
of the airplanes in top and bottom layer is set to 80% of their maximal ascending/descending angle
which is set to 20 degrees. We simulate 20 runs for each experiment from 9 to 60 airplanes (from
3 to 20 in each layer). The simulation is made for both versions of the IPPCA algorithm.

None of the experiments records any collision or violation of the minimal separation. The charts
in the Figures 14 and 15 reports the differences between both versions of the IPPCA algorithm.
The Figure 14 shows IPPCA ver2 algorithm needs less iterations to find solution. The Figure 15
shows better efficiency of the IPPCA ver1. The system efficiency in this scenario is measured as a
rate of a length of the nominal trajectory to a length of the real trajectory.

A Monotonic concession protocol

(MCP) [13, 8] is a classical and widely used protocol for one-to-one negotiation. This protocol
organizes negotiation among two actors who are reaching an agreement that is defined as single
element of a negotiation set. Each of the actors may gain a different utility value out of the various
elements selected from the negotiation set.

The MCP protocols proceeds in rounds. Let us have two agents A and B engaged in the
negotiation process over the proposals σA and σB , elements from the negotiation set. In each
round both agents make simultaneous proposals. In the first round each agent is free to make any
proposal. In subsequent rounds, the agents have got two options:

− either A or B makes a concession and propose a new deal σ′A (σ′Brespectively) that is prefer-
able to the other agent: uB(σA) < uB(σ′A) or

− refuse to make a concession and stick to the proposal σA (σB respectively).

Agreement is reached if one agent proposes an agreement that is at least as good for the other
agent as their own proposal: uA(σB) ≥ uA(σA) or uB(σA) ≥ uB(σB). In the case where both

22

January 15, 2008 FA8655-06-1-3073 Extension Final Report

conditions hold a proposal is selected randomly. Conflict arises when we get to a round where
nobody concedes. In this case the conflict deal will be the outcome of the negotiation.

With MCP there are several open questions. Who shall concede, how much, etc. There have
been several strategies that complement MCP proposed in the research community. Zeuthen
proposed a strategy (referred to as Zeuthen strategy) that provides the following set of rules for
concession:

− start by proposing the best possible agreement; then

− concede whenever your willingness to risk conflict is less or equal to your opponent’s;

− concede just enough to make your opponent’s willingness to risk conflict less than yours.

Willingness to risk is calculated according to the following formula:

risktA =

{
1, if uA(σA) = 0
uA(σA)−uA(σB)

uA(σA) , otherwise

If the opponent concedes too much he may obviously ’waste’ some of his utility. Often one has
to pay for negotiation rounds as it may be beneficial to agree as soon as possible. Small concession
would be hence too inefficient.

If both agents use the Zeuthen strategy, then the final agreement maximizes the Nash product.
This has first been observed by John C. Harsanyi in 1956. That is, agent A makes a (minimal)
concession if and only if its current proposal does not yield the higher product of utilities. Hence,
the Zeuthen Strategy ensures a final agreement that maximizes this product. It follows that the
final agreement will be Pareto optimal. Zeuthen strategy makes CMP an anytime algorithm (i.e.
if terminated at any time the social welfare is better than before). Unfortunately, the mechanism
where both agents use the Zeuthen strategy is not stable. MCP has been recently extended for
covering multilateral process of reaching an agreement [2].

23

January 15, 2008 FA8655-06-1-3073 Extension Final Report

Figure 11: Circle scenario. Simulation for 24 airplanes.

24

January 15, 2008 FA8655-06-1-3073 Extension Final Report

0

2

4

6

8

10

12

14

16

18

20

12 14 16 18 20 22 24 26 28 30 32

Number of Airplanes

Ne
ar

 M
is

se
s

Hill
IPPCA ver1
IPPCA ver2

Figure 12: Circle scenario. Total number of minimal separation violation.

70

75

80

85

90

95

100

12 14 16 18 20 22 24 26 28 30 32

Number of Airplanes

Sy
st

em
 E

ffi
ci

en
cy

 %

Hill
IPPCA ver1
IPPCA ver2

Figure 13: Circle scenario. System efficiency (as a time needed for the flight).

25

January 15, 2008 FA8655-06-1-3073 Extension Final Report

0

100

200

300

400

500

600

700

9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Number of Airplanes

Nu
m

be
r o

f F
lig

ht
 P

la
n

Ch
an

ge
s

IPPCA ver1
IPPCA ver2

Figure 14: Sphere scenario. Number of applied flight plan changes over all airplanes.

90

92

94

96

98

100

9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Number of Airplanes

Sy
st

em
 E

ffi
ci

en
cy

 %

IPPCA ver1
IPPCA ver2

Figure 15: Sphere scenario. System efficiency (as a length of the trajectory).

26

January 15, 2008 FA8655-06-1-3073 Extension Final Report

References

[1] Adrian Agogino and Kagan Tumer. Evolving distributed agents for managing air traffic. In
GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary computa-
tion, pages 1888–1895, New York, NY, USA, 2007. ACM Press.

[2] Ulle Endriss. Monotonic concession protocols for multilateral negotiation. In AAMAS ’06:
Proceedings of the fifth international joint conference on Autonomous agents and multiagent
systems, pages 392–399, New York, NY, USA, 2006. ACM Press.

[3] Su-Cheol Han and Hyochong Bang. Proportional navigation-based optimal collision avoidance
for uavs. In S. C. Mukhopadhyay and G. Sen Gupta, editors, Second International Conference
on Autonomous Robots and Agents, pages 76–81. Massey University, New Zealand, 2004.

[4] R Holdsworth. Autonomous In-Flight Path Planning to replace pure Collision Avoidance for
Free Flight Aircraft using Automatic Dependent Surveillance Broadcast. PhD thesis, Swin-
burne University, Melbourne, Australia, November 2003.

[5] J. Kosecka, C Tomlin, G Pappas, and S Sastry. Generation of conflict resolution manoeuvres
for air traffic management. In Proceedings of Intelligent Robots and Systems, volume 3, pages
1598–1603, September 1997.

[6] Jimmy Krozel, Mark Peters, Karl D.Bilimoria, Changkil Lee, and Joseph S.B. Mitchel. System
performance characteristics of centralized and decentralized air traffic separation strategies.
In 4th USA/Europe Air Traffic Management R & D Seminar, Stanta Fe, NM, December 2001.

[7] Přemysl Volf, David Šǐslák, Michal Pěchouček, and Magdalena Prokopová. Convergence of
peer-to-peer collision avoidance among unmanned aerial vehicles. In IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology (IAT). IEEE, 2007.

[8] Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of Encounter. The MIT Press, Cambridge,
Massachusetts, 1994.

[9] R Schulz, D. Shaner, and Y Zhao. Free-flight concept. In Proceedings of the AiAA Guidance,
Navigation and Control Conference, pages 999–903, New Orelans, LA, 1997.

[10] C. Tomlin, G. Pappas, and S. Sastry. Noncooperative conflict resolution. In Proceedings IEEE
Conference on Decision and Control, December 1997.

[11] John P. Wangermann and Robert F. Stengel. Optimization and coordination of multiagent
systems using principled negotiation. Journal of Guidance, Control, and Dynamics, 22(1):43–
50, 1999.

[12] Steven Wollkind, John Valasek, and Thomas R. Ioerger. Automated conflict resolution for air
traffic management using cooperative multiagent negotiation. In Proc. of the American Inst. of
Aeronautics and Astronautics Conference on Guidance, Navigation, and Control, Providence,
RI, 2004.

[13] Gilad Zlotkin and Jeffrey S. Rosenschein. Negotiation and task sharing among autonomous
agents in cooperative domains. In N. S. Sridharan, editor, Proceedings of the Eleventh In-
ternational Joint Conference on Artificial Intelligence, pages 912–917, San Mateo, CA, 1989.
Morgan Kaufmann.

27

January, 2008 FA8655-06-1-3073 Final Report

AGENTFLY: Autonomous Agents in Air-Traffic Control
January 2008 Final Report

this is a project final report to the FA8655-06-1-3073 contract and it provides technical information about complete work
on the ’Autonomous Agents in Air-Traffic Control’ project

Michal PěchoučekPI, David Šǐslák,
Přemysl Volf, Štěpán Kopřiva, Jǐŕı Samek

Agent Technology Group, Gerstner Laboratory,
Czech Technical University in Prague

1

January, 2008 FA8655-06-1-3073 Final Report

Contents

1 Executive Summary 5

2 Publications 6

3 AGENTFLY Usage Modes 7

4 AGENTFLY Domain Description 9

4.1 Airspace . 9

4.2 Flight Plan . 10

4.3 Zones Around Asset . 11

4.4 Collision Definition . 12

4.5 Collision Avoidance Problem . 13

4.6 Communication Restrictions . 14

5 Flight Simulation 15

5.1 Flight Execution . 15

5.2 Airplane Model . 16

6 Flight Path Planning 19

6.1 The Path Planning . 19

6.1.1 Simple Search Manoeuvres . 23

6.1.2 Combined Search Manoeuvres . 23

6.2 The Time Planning . 24

7 AGENTFLY Architecture Overview 27

8 Integration of External Data Sources 30

9 Core System Description 33

9.1 Server Components for Environment Simulation . 33

9.2 A-globe with UAA Containers . 35

9.2.1 Plane Agent . 35

9.2.2 Pilot Agent . 37

2

January, 2008 FA8655-06-1-3073 Final Report

10 Web-based Access 38

10.1 Internal Data Layers . 39

11 Visualization Component 42

11.1 Layer Architecture . 42

11.2 Presentation Layers . 45

12 Human System Interface 48

12.1 Mission Management . 48

12.2 Switching the Collision Avoidance Method in Real-Time 50

12.3 Static No-flight Zones Management . 50

13 Multi-layer Collision Avoidance Architecture 54

13.1 Collision Solver Manager . 54

13.2 Configuration Description . 56

13.3 Configuration Examples . 57

14 Cooperative Collision Avoidance 61

14.1 Local Cooperative Detection . 61

14.2 Transponder Negotiation Task . 62

14.3 Evasion Manoeuvres . 66

14.4 Rule-Based Collision Avoidance . 67

14.5 Iterative Peer-to-Peer Collision Avoidance . 68

14.6 Multi-Party Collision Avoidance . 71

14.6.1 Interaction of Multi-party groups . 73

15 Non-cooperative Collision Avoidance 74

15.1 NFZ-based Collision Avoidance . 74

15.1.1 Prediction of the Collision Point . 75

15.1.2 Dynamic No-flight Zone Shapes . 76

15.2 Optimal Proportional Navigation Algorithm . 77

3

January, 2008 FA8655-06-1-3073 Final Report

16 Collective Flight 80

16.1 Group Synchronization . 80

16.1.1 Synchronization Messages Types . 81

16.1.2 Group Coordination Algorithm . 82

16.2 Formation Composition And Decomposition . 83

16.2.1 Formation slots assignment . 83

16.2.2 Flight Path Planning . 85

16.2.3 Collision Avoidance during Approach to ASP 86

16.2.4 Flight in Formation . 86

16.2.5 Formation Decomposition . 86

17 Experiments 87

17.1 Cooperative Collision Avoidance . 87

17.1.1 Rule-based vs. Iterative Peer-to-peer Collision Avoidance 87

17.1.2 Iterative Peer-to-peer vs. Multi-party Collision Avoidance 95

17.1.3 Iterative peer-to-peer and Multi-party Method in Specific Scenarios 97

17.2 Non-cooperative Collision Avoidance . 99

17.2.1 Comparison of No-flight-zones-based Non-Cooperative Deconfliction and Pro-
portional Navigation . 99

17.2.2 Additional Scenario of Proportional Navigation Failure 100

17.2.3 Complex Scenarios of Non-Cooperative Collision Avoidance 101

18 UAA Operation over LA in Real Civil Air-Traffic 111

19 Complex Combat Scenario 112

20 AGENTFLY Prototype Requirements 119

4

January, 2008 FA8655-06-1-3073 Final Report

1 Executive Summary

This final report of the AFRL project FA8655-06-1-3073 provides the complete description of the
AGENTFLY system. The AGENTFLY is the prototype application of the multi-agent system
deployed to the airspace domain mainly for the distributed agent-based collision avoidance among
autonomous aerial assets (UAA) and for the collective flight modeling. While to core work of the
project has been developed with FA8655-06-1-3073 project (referred here as FA8655-06-1-3073-
main), smaller part of the work was supported by a specific project extension (referred here as
FA8655-06-1-3073-extension). The extension partially supports implementation of the collective
flight modeling described in this document. The main part of the FA8655-06-1-3073-extension
was aimed at the theoretical study of the properties of iterative peer-to-peer collision avoidance,
identification of the worst case scenarios and scalability tests providing the empirical properties
of the used technology compared to the latest state-of-the-art. The results from these topics are
stated in the separate project extension report [9].

The key implemented workpieces within FA8655-06-1-3073-main are described in this report
that is structured into several sections providing:

• the use modes of the AGENTFLY prototype (Section 3),

• the detailed specification of the airspace domain where the multi-agent techniques have been
applied (Section 4),

• the flight modeling (Section 5) and time-constrained way-point flight plan planning algorithm
in defined airspace avoiding the ground surface and no-flight zones (Section 6),

• the description of the AGENTFLY prototype architecture (Sections 7 and 9) including real-
time visualization component (Section 11), remote web-based access (Section 10) and the
integration with various external data sources (Section 8),

• the multiple operator agent interface providing the human-system interface allowing the real-
time control of the UAAs (Section 12),

• the multi-layer collision avoidance architecture allowing simultaneous combination of the
cooperative and non-cooperative collision avoidance methods (Section 13),

• the description of three implemented cooperative collision avoidance algorithms (Section 14):
rule-based, iterative peer-to-peer and multi-party collision avoidance,

• the non-cooperative collision avoidance based on the dynamic no-flight zones (Section 15),

• the collective flight coordination architecture used for the synchronization of the group of
UAAs supporting the flight in the formation as well as the outer group-to-group negotiations
(Section 16),

• the basic set of the empirical experiments (Section 17) comparing all cooperative methods
together, non-cooperative no-flight zone method comparison to the optimal proportional
navigation algorithm,

• the specialized demo cases demonstrating the benefits of the multi-party algorithm (Section
17.1.3) and validating the concept of multi-layer collision avoidance architecture where the
agent controlled airplanes operate in the area with civil traffic (Section 18),

• the description of the complex combat scenario used as a testing case for the mix of all
features provided by AGENTFLY in a very complex mission (Section 19),

• the AGENTFLY prototype runtime requirements (Section 20).

5

January, 2008 FA8655-06-1-3073 Final Report

2 Publications

The work from this project is described in the several already published (or accepted) publications:

[1] David Šǐslák, Jǐŕı Samek, and Michal Pěchouček. Decentralized algorithms for collision avoid-
ance in airspace. In Padgham, Parkes, Mueller, and Parsons, editors, Proceedings of 7th In-
ternational Converence on Autonomous Agents and Multi-Agent Systems (AAMAS 2008), to
appear.

[2] Davis Šǐslák, Michal Pěchouček, Přemysl Volf, Dušan Pavĺıček, Jǐŕı Samek, Vladimı́r Mař́ık,
and Paul Losiewicz. AGENTFLY: Towards Multi-Agent Technology in Free Flight Air Traf-
fic Control, Defense Industry Applications of Autonomous Agents and Multi-Agent Systems,
chapter 7, pages 73–97. Birkhauser Verlag, 2008.

[3] Jǐŕı Samek, David Šǐslák, Přemysl Volf and Michal Pěchouček. Multi-party collision avoid-
ance among unmanned aerial vehicles. In 2007 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT 2007), pages 403–406, November 2007.

[4] Vladimı́r Mař́ık, Libor Přeučil, Michal Pěchouček, Miloslav Kulich, Milan Rollo, Roman Mázl,
Pavel Vrba, Tomáš Krajńık, and David Šǐslák. Od osamocených robot̊u ke kolaborativńı robotice,
Umělá inteligence (5), pages 431–496. Academia, Praha, 2007.

[5] Pavel Vrba, Vladimı́r Mař́ık, Libor Přeučil, Miroslav Kulich, and David Šǐslák. Collision avoid-
ance algorithms: Multi-agent approach. In Lecture Notes in Computer Science of Holonic
and Multi-Agent Systems for Manufacturing - HoloMAS 2007, pages 348–360, Munich, 2007.
Springer.

[6] David Šǐslák, Přemysl Volf, Antońın Komenda, Jǐŕı Samek, and Michal Pěchouček. Agent-
based multi-layer collision avoidance to unmanned aerial vehicles. In Proceedings of International
Conference on Integration of Knowledge Intensive Multi-Agent Systems (KIMAS ’07): Modeling,
Evolution and Engineering, 2007.

[7] Michal Pěchouček, David Šǐslák, Dušan Pavĺıček, and Miroslav Uller. Autonomous agents for
air-traffic deconfliction. In Peter Stone and Gerhard Weiss, editors, Proceedings of the Fifth
International Joint Conference on Autonomous Agents and Multiagent Systems, pages 1498–
1505. ACM, 2006.

[8] David Šǐslák, Martin Rehák, Michal Pěchouček, Dušan Pavĺıček, and Miroslav Uller.
Negotiation-based approach to unmanned aerial vehicles. In DIS ’06: Proceedings of the
IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications
(DIS’06), pages 279–284, Washington, DC, USA, 2006. IEEE Computer Society.

6

January, 2008 FA8655-06-1-3073 Final Report

3 AGENTFLY Usage Modes

The designed AGENTFLY collision avoidance system described in this document can be used in
several modes. The main goal considered during the system development was to use the multi-agent
system for real-time planning and control. The multi-agent system integrates the concept of
Free Flight and thus the initial flight path planning by airplanes (when they are preparing to
start or their mission is amended) provides the plans that can contain possible collisions. This
makes initial planning very fast fulfilling only constraints given by the airplane model and airspace
(ground and defined no-flight zones). The collisions are then detected and solved by See and
Avoid capability of Collision Avoidance algorithms just during their flight execution. The setup
of detection range defines how much in advance the collisions are removed and thus restricts the
number of airplanes which detects mutual collisions. The avoidance algorithm then solves the
conflicts of that identified groups of the airplanes. The reduction of the number of airplanes leads
to the reduction of the algorithm complexity. Airplanes can fly on any planned flight corridor
not just on predefined ones. This results in substantial scalability improvement affording higher
number of aerial vehicles to operate in condensed airspaces.

Described real-time case can be realized in three different deployment setups: fully deployed
case, remote control case and hybrid deployment. In the first setup the agents providing described
function are running on the asset hardware and use on board equipment. The agents don’t need
to communicate with any headquarter center (or airspace control center) to provide collision-free
corridors. In the remote control case the agents are running on a server farm in control center
(ground or air-commandn center like EC130J) and each plane agent (Section 9.2.1) has permanent
communication link to control respective asset remotely. In this case it is not necessary to have
whole multi-agent system on the same server farm. The agents (and thus UAAs) can be split into
several groups running on own host but to provide cooperative collision avoidance (Section 14)
there must exists a communication connection among them. If the cooperative collision avoidance
between any asset from different group is not necessary, the airplanes use non-cooperative avoidance
(Section 15) which requires radar sensing function. It is allowed to read radar data from the asset
hardware via communication link or use control center radar sensing. The multi-agent technology
allows simple combination of described setups in hybrid deployment – some agents are running
on the assets and others control them remotely using on-board or off-board radars still using
agent-to-agent negotiations where it is possible.

The AGENTFLY system can be used also in off-line planning mode. In this mode the system
utilizes its capability of detailed flight modeling (Section 5). The system provides simulation and
collects the results: detailed collision free flight corridors, contacts times etc. In this mode the sys-
tem virtual time is simulated in as fast as possible manner – the simulation speed is automatically
adjusted depending on the system load. The time necessary for getting the results depends on the
complexity of the given situation and available resources. The use of the system in off-line planning
mode has sense only in the situations when we know all flight details of all aircrafts in advance
and is not suitable for the cases with at-least one non-cooperative (not controllable, intruder or
enemy) airplane.

The simulation capability can be used also for the verification of given corridors and control
requests. In this mode agents don’t provide any new control for airplanes and all collision avoidance
algorithm are disabled. They just follow the given instruction and the simulation environment
checks if all specified constraints are satisfied.

Beside the collision avoidance the multi-agent system provides also collective flight coordination
(Section 16), human on-line interactions (Section 12) and is open to integrate any other advanced
control algorithm (both distributed and centralized). The collective flight coordination can operate

7

January, 2008 FA8655-06-1-3073 Final Report

in all described modes but human on-line interactions as well as non-cooperative collision avoidance
can be utilized only in the real-time mode.

8

January, 2008 FA8655-06-1-3073 Final Report

4 AGENTFLY Domain Description

In this section the detailed specification of the free-flight domain (FFD) as provided by AGENTFLY
is described. In FFD the autonomous aircrafts, all members of A, operate in a shared three-
dimensional airspace Air ⊆ R3 that is limited by the ground surface and airspace boundaries, see
the Section 4.1. The behavior of the airplane is given by its flight plan (see Section 4.2). The
Section 4.3 introduces several zones around each airplane. Collisions and multi-collision sets are
described in the Section 4.4. The collision avoidance problem is defined in the Section 4.5. The use
of the local collision avoidance is essential in the cases with restricted communication as described
in the Section 4.6.

4.1 Airspace

The airspace Airi that can be occupied by an individual aircraft Ai is made smaller by no-flight
zones Zi = {Z1, Z2 . . .}, where the Ai cannot fly (thus Airi = Air−

∑
Zk∈Zi

Zk). The AGENTFLY
system internally represents airspace as a block subsection of R3 defining the boundaries and a set
of the no-flight zones. For the simpler implementation the ground surface is defined as a special
case of no-flight zone. Thus the AGENTFLY divides no-flight zones into three groups:

• world zones – represent ground terrain and other static obstacles in the simulated world,

• static zones – encapsulates world areas where UAA cannot operate: strategic places (e.g.
nuclear power plants), non-standard weather conditions or dangerous enemy territories,

• dynamic zones – holds zones which are changed very often; they are mainly defined by
non-cooperative collision avoidance algorithm (Section 15.1.2).

The basic building blocks for defining no-flight zones are:

• octant tree – the area described by the tree is divided by eight identical cuboidal subcells [3].
All cells which are fully occupied by that zone are marked as a full cell. Cells which are not
intersected by zone are marked as the empty ones. There are many cells marked as mixed
which have defined another eight subcells with own status. The maximum height of the tree
structure can be limited to provide fast test operations.

• height map – the internal matrix structure defines how many space is occupied over position
identified by respective cell indexes. The matrix is initially filled from the height map images
where the intensity of the pixel defines the height (brighter is higher and darker is lower).
The implementation allows also to specify neighbors aggregation factor doing reduction of
the matrix size and thus speed up testing operations on it.

• add/sub composition – defines the no-flight regions by adding and substraction operation
on elementary geometrical objects: block, ellipsoid and cylinder. Using such composition
very complicated zone shapes can be build. This representation allows not only fast line
intersection testing but also fast corridor intersection testing.

The final zone shape is defined as a join group operation of several basic building blocks. It looks
like hierarchical tree structure where each leaf node in the tree is one of the basic block and internal
nodes are grouping and/or transformation operations. The root node of the tree integrates the

9

January, 2008 FA8655-06-1-3073 Final Report

basic boundaries of whole airspace as a block subsection of R3. Thus the area defined by any basic
block can be simply rotated, scaled and translated as defined in the node transformation:

x′ = R · x− t,

where R is rotation matrix t is translation vector, x is point in node system of coordinates and x′

is point in the system of coordinates below this node.

The hierarchical structure defining airspace Airi for the airplane Ai provides interfaces to
perform the intersection testing for point, line and also corridor with given dimensions. For line
and corridor it is able to return the first intersection point on that path. The testing of corridor on
octant tree and height map basic block leads to several consecutive calls of transformed line tests
on that structures.

4.2 Flight Plan

The behavior of the airplane Ai ∈ A is given by the specific flight plan fpi = (sp, e1, e2 . . . en)
defined as a start situation and ordered sequence of flight elements. The airplane state at time
t including position, direction vector, normal vector and velocity is defined as σ(t) = 〈x, d, n, v〉
where t is counted from the start of the fpi. The start situation includes the initial airplane state
and start time sp = 〈σ(0), t0〉. Each of the flight elements ei can be one of the following types (see
Figure 1):

r
h

α
h

horizontal turn

r
v

α
v

vertical turn

straight element
γ

spiral element

Figure 1: Flight plan element types

• Straight element estraight = 〈l, a〉 – specified by its length and acceleration. The airplane
will simply fly with the constant acceleration (the acceleration can be zero) for the specified
time in the direction given by its initial state in this element σei(0). The final velocity (at
the end of the element) is determined by the initial velocity, duration and acceleration.

• Horizontal or vertical turn elements eturn = 〈r, d〉 – given by the turn radius (sign defines turn
direction) and angle. They are represented by circular arcs. Horizontal turns are performed

10

January, 2008 FA8655-06-1-3073 Final Report

in the plane of flight. Vertical turns are performed in the plane described by the initial
airplane direction and normal vectors. The vertical turns are used to represent parts of the
flight path, where the plane changes its motion from a horizontal flight to an ascent and
descend trajectory.

• Spiral element espiral = 〈r, d, c〉 – similar to horizontal turn element extended by a climbing
rate. It is represented by a part of a spiral with an axis parallel to the z axis of the world
coordinate system. The parameters of the spiral are the radius (again the sign defines turning
direction), duration and climbing rate (sign define if ascend or descend). The climb rate
specifies how the altitude is changed on one turn.

For the simplification of the modeling and possible execution of such prepared elements the ve-
locity can be changed only on the straight elements and on all others it remains constant. The
AGENTFLY implementation contains one more element warp element. It is a special element
which doesn’t contain any trajectory definition. It is defined just as a state σ. It is internally
used for the reduction of the cumulative errors given by the differential description of the flight
trajectory.

The elements are constrained by the airplane type that often specifies minimal and maximal fly-
ing velocity, minimal and maximal acceleration, minimal turn radius and max climbing/descending
rate. Each element ek+1 specifies the flight path part relatively from the end of the previous ele-
ment ek or from sp for the first element e0. Thus the path given by fpi is continuous and must
be smooth. First derivation in all coordinates and time must be continuous too. Let us introduce
FP = {fpi}Ai∈A as a set of all actual flight plans of the aircrafts in the airspace.

The behavior of an aircraft is not random, while it is specified by a mission. All points
on the path of fpi must be in Airi and must be constrained by the airplane mission Mi =
〈wp1, wp2 . . . wpn〉, a sequence of way-points wpk = 〈x, t1, t2〉. The way-point in Airi specifies
the time interval by specifying t1 and t2 when the aircraft is allowed/requested to fly through.
Let us introduce the function p(fpi, t) that returns the position of the individual airplane Ai
at the given time t. The way-point wpk is completed by the Ai’s flight plan fpi if ∃t so that
p(fpi, t) = xwpk and twpk

1 ≤ t ≤ twpk

2 . In the other words, the path defined by fpi must go
through each way-point at least once in the specified order of Mi. A segment represents a part of
a flight plan between two successive way-points. The example of the flight plan is in the Figure 2.

Definition 1. The planning problem in FFD from the perspective of an individual aircraft Ai
with respect to the mission Mi is the process of finding such a flight plan fpi so that ∀wpk ∈ Mi

are completed.

Airplane can alter its own current fpi anytime, but only the future part can be changed. The
processes of (re)planning and collision avoidance are carried out in the same time as the process
of mission accomplishment. Thus, the airplane is allowed to change its flight plan in some future
time t to be able to apply new changed fp′i.

4.3 Zones Around Asset

Each airplane is surrounded by a number of concentric spherical zones, see Figure 3. The AGENT-
FLY uses the same zone definition for all airplanes of a certain type. Thus, there can exists airplanes
with different zones at the same time.

• Communication zone – is the outermost one. It represents the communication range of the
data transmitter on the aircraft board. See the Section 4.6.

11

January, 2008 FA8655-06-1-3073 Final Report

straight element

horizontal turn

vertical turn

spiral element

segment elements:

segment
1

segment
2

Figure 2: The example of the flight plan

• Alert zone – defines the operation range of the radar sensing available to the agents controlling
the airplane. If another airplane is located within the zone, agents are periodically notified
about its relative position. This situation is shown in the Figure 3. The radar data are used
for the non-cooperative collision avoidance (Section 15) and can be also used for the checking
known information from the others.

• Safety zone – is used for the separation planning of airplanes during collision avoidance. The
detailed description is in the Section 4.4.

• Collision zone – is the innermost zone. It defines critical contact area. When two airplanes
get too close together and their mutual distance is smaller than the sum of their collision
radiuses, physical contact between them occurs.

4.4 Collision Definition

Around each airplane there is defined a safety zone – a spherical space with a given radius rszi
for each Ai. It defines surrounding airspace where no other airplane is allowed to appear so that
effects of turbulence caused by other airplane and inaccuracy of flight plan execution (there are
allowed small deviations from the flight path) can be avoided. Let us introduce the function

col(fpi, fpj , t) =
{

1 if |p(fpi,t),p(fpj ,t)|≤max(rszi,rszj)

0 otherwise

specifying the fact that two flight plans fpi and fpj have a collision in time t.

Definition 2. Two aircrafts Ai and Aj (with their flight plans fpi and fpj respectively) are
colliding (denoted as Ai ⊗Aj) if and only if ∃t : col(fpi, fpj , t) = 1.

Clearly, Ai ⊗ Aj ≡ Aj ⊗ Ai. The set A is dynamic as there can be new planes created or
removed (e.g. after landing) during the process of mission execution. In the FFD it is guaranteed
that newly created plane Ai has no collision on its flight plan fpi with any other existing fpj in

12

January, 2008 FA8655-06-1-3073 Final Report

communication
zone

alert
zone

safety
zone

collision zone

Figure 3: Communication, Alert, Safety and Collision Zones around each aircraft

next δ from its start. The δ value is specified for each aircraft and guarantees that there is enough
air space to avoid future collision which appears just after plane creation. After δ the flight plan
of the newly created aircraft can collide.

Let us discuss how the multiple collisions can influence each other. We introduce Call ⊂ A×A
as a set of all colliding aircrafts. We will be working with the multi-collision set of collisions
C ⊂ Call that includes all related collisions. In C there is at least one pair of colliding airplanes
Ai⊗Aj and in the same time there is no such collision Ak⊗Al ∈ C so that neither Ai nor Aj does
not have a collision with either Ak or Al and there is no other collision in C that is linked with
both Ai ⊗ Aj and Ak ⊗ Al by a finite number of collisions. Let us view C as undirected graph.
Let us assume that each collision from the set C has one vertex in a graph, an edge between any
two vertices exists if and only if there is at least one Ai involved in both collisions represented by
vertices. The C is the multi-collision set if and only if its graph representation is connected (for
every pair of distinct vertices in the graph there exists a path linking them both). Note that the
concept of multi-collision set includes also collision of two airplanes only. AC ⊆ A is the set of all
aircrafts which are implied in at least one collision in C.

4.5 Collision Avoidance Problem

Let us work with the encounter [11] as a subject of collision avoidance problem. For a given multi-
collision set C an encounter enk is tuple 〈t, {fpi}Ai∈AC 〉 such that t ≥ now is a time point in the
future from which the flight plans of the colliding airplanes can be changed.

Clearly, the collision avoidance problem (CAP) in FFD can be defined as the process of finding
such FP for which Call = ∅. In this paper we will be solving CAP by solving local collision
avoidance problems (LCAP) applied on top of FP.

Definition 3. Local collision avoidance problem (LCAP) (replanning) with respect to an
encounter enk = 〈t, {fpi}Ai∈AC 〉 and FP is the process of finding such a solution {fp′i}Ai∈A′⊆A

13

January, 2008 FA8655-06-1-3073 Final Report

founded in time t′ < t so that the encounter enk is eliminated.

The current time and time t from encounter gives the maximal interval in which LCAP algo-
rithm can search for the solution. The selection of right time t in encounter is the part of the
algorithm and can take into account its own properties. Two CAP algorithms applied to the same
situation can be compared using their final flight plan utility values after accomplishment of all
aircrafts’ missions. The utility function value ui(fpi) used for comparison [7] includes aircraft’s
intention to proposed solution of the conflicts – e.g. be as short as possible, use minimum of fuel,
fulfill time constraints of the way-points, etc. The ui(fpi) ∈ 〈0, 1〉 is evaluated as weighted sum of
its components. Each airplane can have different components, but each airplane must use the same
in both compared CAP algorithms. E.g. for the social welfare criterion we can say that one CAP
algorithm is better if

∑
Ai∈A ui(fpi) is higher where fpi represents final flight plan of airplane Ai

after applying CAP algorithm.

4.6 Communication Restrictions

The airplane asset can host one or more agents and provide them communication infrastructure via
its on-board communication transceivers with limited range of communication ci. So, the agents
at Ai can negotiate with agents at Aj in time t only if | p(fpi, t),p(fpj , t) |≤ min(ci, cj). The
agents on airplane Ai have full information about its flight status and can call functions for altering
fpi. Using this transceiver airplane agents are aware of existence of other airplane if the airplane
can communicate with them. There is no central element in the domain so the agent knows only
information which can be obtained from its hosting airplane or by negotiation with other agents.
Even though the range ci is relatively large not all aircrafts can communicate together. The domain
allows also airplanes which are not capable to communicate with others due to several reasons:
broken transceiver, or they don’t want to communicate. But in the current system we are focused
only on the case where all airplanes A are able to communicate together if distance condition is
satisfied. Thus, agent controlled airplanes can cooperate to do collision avoidance.

14

January, 2008 FA8655-06-1-3073 Final Report

5 Flight Simulation

This sections provide the detailed description of the flight simulation in the AGENTFLY. The flight
plans are executed by airplanes in discrete fashion with variable time step length, see the Section
5.1. The airplane model and the structure of the flight plans were designed for very fast and scalable
simulation of a great number (hundreds to thousands) airplanes at once. That is why we use a
simplified physical model of airplanes as described in the Section 5.2. The current implementation
doesn’t consider the impact of the forces affecting the airplane to the fuel consumption, the decrease
of the airplane weight due to the gradual fuel consumption and the influence of wind force on the
airplane flight. Moreover the flight velocity can be changed only on the straight flight elements
(see Section 4.2). The AGENTFLY currently uses the physical model for the standard monoplane
and others such as choppers are not supported in the current AGENTFLY implementation, but
the system can be extended by specialized flight models and path planners.

5.1 Flight Execution

The simulation of the flight of airplanes is performed by the plane simulation agent, which resides
on a server container (see the AGENTFLY architecture in the Section 7). This agent maintains
the information about the state of all airplanes present in the system, along with their flight plans.
The flight of airplanes is simulated by the evaluation of their flight plans over the time using flight
model described in the Section 5.2. The simulation agent is able to simulate the flight of many
airplanes at once. The flight paths of individual airplanes are not fixed after their first planning.
They can be changed in future (for example, if two flight plans were set on a collision course, the
airplanes will change their flight plans to avoid the collision as described in the Section 4.2.

The simulation agent uses the notion of global simulation time. It is the time of a global clock,
called simulation clock, running on the simulation agent. This time serves as a reference frame for
all time information stored in the flight plans. When a new airplane is created, a free ”plane slot”
is allocated in the plane simulator for its flight plan and state information. After the simulator
receives a new flight plan for the plane, it starts executing the plan. Every flight plan has defined
its own initial global simulation time t0 (which is equal to the time when the simulator had received
this plan) and all time information contained in the flight plan is considered relative to it.

The plane simulator executes the flight plans in discrete time steps – within the discrete simu-
lation loop. The interval between such two steps/frames (i.e. updates of the state information of
the planes present in the system) is given by the current loaded AGENTFLY system configuration.

The simulator maintains up-to-date information about the states of all airplanes currently
present in the system. The state information stored in the data structures of the simulator always
contains the real state of the airplanes at the moment of the last update. Let’s say that the global
simulation time of the last update is t and the state of each airplane σ(t) describes its position,
direction, normal and velocity. For each plane, the plane simulator also knows its current position
in the corresponding flight plan. By the position in the plan, we mean the current segment, the
current element and the relative time from the start of the element.

When the next update occurs, the global simulation time will be t′ = t + ∆t, where ∆t is
the time step duration between two successive updates. The state information and the positions
of the airplanes in their respective flight plans has to be updated to new values. The state of
each airplane is updated by executing the portion of its flight plan corresponding to the time ∆t.
During the executions of flight plans, the positions of the airplanes in the flight plans are adjusted
accordingly. When the update ends, the new position of each airplane will possibly refer to a new

15

January, 2008 FA8655-06-1-3073 Final Report

segment, element and/or relative position in the element. The segments and elements, which were
finished during the update, are removed from the flight plans. If during the execution of the flight
plan of some airplane the end of plan is encountered, the airplane is removed from the simulation
system.

The time value ∆t may be, but doesn’t need to be, equal to the real time passed between two
updates (in that case, ∆t is equal to the update interval); it even does not have to be constant
during the simulation. By changing the ∆t value, it is possible to change simulation speed; the
simulation can be sped up, slowed down or even stopped. Our simulator allows to perform the
simulation using various speeds depending on the load of used hosts in the system suitable for fast
off-line planning or validation as described in the Section 3.

For obvious reasons, only the parts of the plan, which were not simulated yet (the ”future”
parts of the plan), can be changed. Let’s say we want to change a flight plan (i.e. replan it) and
the part be changed (by replacing it with a new plan) is specified by some element marking its
start. The replanning will be performed in the way that the portion of the original plan from the
marker element to the end of the plan will be replaced by the new plan.

5.2 Airplane Model

In AGENTFLY system, airplanes are modeled as the mass points, which move along a previously
planned trajectories. The state σ of an airplane in given time t is defined by the following pa-
rameters: the center of mass of the airplane x, direction vector d, normal vector n and velocity
v. The direction vector d corresponds to the flight direction. The vector n, normal vector or
up-vector, is perpendicular to the direction vector and always aims upwards. Let us denote vector
(d × n)/||d × u|| (an unit vector perpendicular to vectors d and u) as w; then, the quadruple
〈x, d, w, n〉 defines the local coordinate system bound to the current state of the plane, as opposed
to the world coordinate system (O, x, y, z), see Figure 4. The plane defined by vectors d, w and
passing through x is referred to as plane of flight.

_

_

_

_ _

_

_

_

_

_
x

1

w
1

w
2

d
2

n
2

x
2

O

x

y

z

d
1

n
1

_

_

Figure 4: World and local coordinate systems

16

January, 2008 FA8655-06-1-3073 Final Report

longitudinal
axis

lateral axis

vertical
axis

Figure 5: Axes of the airplane

This definition of local coordinate systems of the airplanes allows us to specify the flight plans
for the airplanes in a very simple way (the flight plans are described in detail in the Section 4.2).
However, it is important to note that this coordinate system is linked with the motion of the
airplane and that the directions of vectors d, w, n do not necessarily correspond to the directions
of longitudinal, lateral and vertical axes of the airplane (see Figure 5). As opposed to simplified
mass point model, the real airplane has a specific geometry and shape of wings. For example, the
lift and drag forces affect the airplane movement thus the direction of flight of the airplane is not
identical to its main (longitudinal) axis, but there is nonzero angle α (frequently referred to as the
angle of attack). Also, during turns, the airplane is affected also by the centrifugal force, which
forces the airplane to turn around its longitudinal axis; the angle between the plane of flight and
the plane of the wings of the airplane is called bank angle β. See Figure 6.

w

plane of flightd

α

α

β

β
nn

_ _

_

_

Figure 6: Angle of attack (α) and bank (β) angles

The five main forces, which affect the movement of an airplane during the flight, can be ex-
pressed by the following simplified formulas:

• gravity G = mg,

• lift L = 1
2CLAρ

2,

17

January, 2008 FA8655-06-1-3073 Final Report

• drag D = 1
2CDAρ

2, where CD = CDmin
+ C2

L

π·ar·0.75 ,

• thrust T , and

• centrifugal force C = mv2

R , present during turning.

The meaning of the parameters mentioned above is as follows: m is the plane weight, g is
the acceleration of gravity, CL is the coefficient of lift, CD is coefficient of drag, A is the area of
wings, ar is the aspect ratio of wings, ρ is the air density, v is the airplane velocity and R is a
radius of turning. Our airplane model is very simple; we do not use the aforementioned formulas
as the equations of motion to describe the Newtonian airplane dynamics, but we use them only to
determine the magnitudes and directions of the forces affecting the airplane. This information is
then utilized for getting the pitch and roll angles of the plane and for computing the thrust force.
The pitch (angle between the longitudinal axis of an airplane and xy plane) and roll (angle between
the lateral axis of an airplane and xy plane) angles are used for the simulation of the radars (since
the area of the airplane profile visible from the ground depends on the banking of the airplane).
From the magnitude and direction of thrust we estimate the fuel consumption.

Our model neglects certain more complicated aspects of the airplane geometry, such as flaps or
landing gear. Furthermore, in the current version of the simulation system, we assume the airplane
weight to be constant during the entire flight – we do not consider the decrease of the weight due
to the gradual fuel consumption. We also do not (yet) consider the impact of wind on the velocity
and direction of the airplane movement; we assume that the plane performs such maneuvers, that
it always follows its planned trajectory and moves at the defined velocity. As for now, we utilize
this kind of information only to specify the direction of the airplanes during takeoff and landing,
in the way that the airplanes land and take off in the direction against the direction of wind.

18

January, 2008 FA8655-06-1-3073 Final Report

6 Flight Path Planning

The planning of the flight path of an airplane is performed by the planner – a component of the
pilot agent. The result of the planning is the flight plan, which was described in the Section 4.2.
The inputs to the planner are the mission specification for the airplane (represented by the list of
way-points, which the airplane has to visit) and the velocity restrictions given by the fixed parts
of the flight plan. In addition, the planner must also consider the defined plane airspace. The
airspace is restricted by no-flight zones, which the plane must not enter during its flight, and plan
the path to avoid them.

Aside from the planning of new flight paths, another important function of the planner is the
so-called replanning. The replanning changes a part of an existing flight plan while keeping the
rest of the plan intact. The replanning is used after the collision avoidance (see the Section 14) and
to alter the flight plan to avoid the no-flight zones (described later in this section). The replanning
is usually performed by means of inserting of special way-points into a particular segment or
segments. The insertion or insertions will cause the splitting of the replanned segment into two or
more new segments; these segments are to be planned again, thus creating a replanned flight path.
Aside from the ordinary way-points used for the definition of the important navigational points
for planning the flight path of an airplane, the solver way-points are used during the collision
avoidance for applying evasion manoeuvre (see the Section 14.3).

The planning of a flight path proceeds in two phases. In the first phase (path planning), the
planner generates an initial flight plan, which passes through all input way-points, Section 6.1.
If there are any time constraints associated with the way-points, they are ignored in this phase.
The planned path is created to be as short as possible, but still respecting defined airspace thus
excluding any defined no-flight zone (Section 4.3). In the next phase – time planning (Section 6.2),
certain parameters of the elements generated in previous step are adjusted in such way that the
modified flight plan satisfies (if possible) all time constraints.

6.1 The Path Planning

In this phase, the planner generates a detailed flight plan in such way that the flight path will
correctly pass through all the way-points as specified in the Section 4.2. The temporal data
associated with each way-point are not yet taken into account. For each couple of successive
way-points, a segment is generated. The segment is empty, containing no elements. A segment
represents the smallest part of the flight plan, which can be planned independently on the other
parts of the flight plan. Each segment has several parameters, serving as inputs for planning
algorithm (which will fill the initially empty segment with elements). These parameters are the
start and end points of the segments with the tangents to the flight plan in these points. The
tangents are calculated from the input set of way-points and chosen in such a way that the tangent
in the end point of some segment and the tangent in the start point of the next segment will point
in the same direction (this property is called geometric continuity or G1; the planning algorithm
assures that the same condition holds also for the elements of the segment; therefore, the planned
flight path is always G1 continuous). During the process of computation of tangents for the way-
points it is checked if it is possible to insert there path regarding defined airspace. In other words it
is checked how far is the nearest obstacle (ground or no-flight zone) from that point in the selected
vector in positive as well as negative direction. If there is not enough space to successfully insert
elements respecting airplane type constraints, the tangent in that way-point is adjusted to fulfill
that restrictions and have minimal variation from the optimal one.

Initial implementation of fast two-phase A* path finding algorithm (worked only with one no-

19

January, 2008 FA8655-06-1-3073 Final Report

flight zone kept in octant tree structure) was later replaced by the manoeuvre-based path-finding
algorithm. The current manoeuvre-based path-finding algorithm is defined by two points (start,
destination) and – in contrast with the previous algorithm – also by two vectors (initial direction,
target direction).

The manoeuvre-based algorithm incorporates a single A* progressive path planning. As the
problem is defined over a continuous airspace and flight plan elements, it is necessary to apply a
suitable discrete sampling. The algorithm uses dynamic size of the discrete sampling step depending
on the distance from the nearest obstacle from the current position. The size is smaller when it
is close to the obstacle. And the size is larger when it is far from the nearest obstacle. Thus it
allows to quickly search very large airspace. The number of discrete sampling sizes is given by
the planner configuration and is specified for particular world. To be able to find also very small
holes in large obstacles the testing distance for appropriate sampling step is given by that size and
each new step size must be at most two times smaller than previous one. The algorithm uses path
smoothing for removing influences of that dynamic discrete sampling.

In the Figure 7 there is expansion visualization for the 3D world with defined no-flight zones.
For that example algorithm searches for the optimal trajectory over more than 30 thousands
elements. The discrete sampling of a continuous airspace is done by dividing the plan to several
connected search manoeuvres. In other words, the search algorithm searches for the chain of
that search manoeuvres connecting the start point and destination point exactly (respecting given
initial and target direction vector) with minimal criterion value. Each search manoeuvre is defined
by its initial position in airspace and a normalized direction vector. The most of the search
manoeuvres also have additional parameters. Each search manoeuvre is also defined by expressions
for the calculation of the destination point of the search manoeuvre and a target direction vector.
Each search manoeuvre also defines an expression for the calculation of the length of the search
manoeuvre which is used for building criterion function for the path search. The

Figure 7: Expansion of the manoeuvre-based path-finding algorithm using dynamic discrete step
length in the 3D world with defined no-flight zones.

20

January, 2008 FA8655-06-1-3073 Final Report

Figure 8: Tested lines for intersection with obstacles. The red points shown identified first inter-
section on the line.

Simple search manoeuvres (Section 6.1.1) correspond to types of elements of the flight plan
and their parameters are described by constants. When using only simple constants, the existence
of the solution is not guaranteed because of discrete sampling and the requirement to reach the
exact destination point and target direction vector. Therefore it is necessary to extend the set of
simple search manoeuvres with combined search manoeuvres (Section 6.1.2). They consist of one
or more simple search manoeuvres whose parameters can be determined exactly. For example, for a
combined search manoeuvre of flight between two points, all parameters of inner search manoeuvres
are calculated so that the destination point of the combined search manoeuvre matches exactly
the requested destination point and so that the target direction vectors match.

Expansion of the state space is then carried out by chaining the search manoeuvres according
to the A* algorithm, i.e. by the sum of path price g (given by the search criterion function) and
estimated price (heuristics) h of the path to the destination point. The expansion discrete step
is identified by the end point of previous search manoeuvre from the configuration (as described
above). Only such search manoeuvres are added that do not leave given airspace, i.e. they do not
run through a ground surface or no-flight zone. This is tested using the line approximations for
its defining flight plan elements. In the Figure 8 there are shown all testing lines from the top
perspective which are tested for the example in the Figure 7. There were tested several hundreds
of thousands lines for the intersections. The red point indicates the first line intersection with
boundary of defined airspace. There are intersections around cylindrical no-flight zones and other
relates to the intersection with ground surface.

Each newly expanded search manoeuvre is tested if the search algorithm has already visited that
position. The test is done by the comparison of the end points and also direction in that end points.
The test is done against all closed and not visited but kept in open nodes. To accelerate testing
there is used special hashing test supporting also that dynamic discrete sample step. Moreover
there is allowed some epsilon-neighborhood to match equality and similar epsilon neighborhood in

21

January, 2008 FA8655-06-1-3073 Final Report

the direction mishmash. If the match is found, the values g + h are compared and if it is better
for the new expansion, the old one is replaced and moved back to open set. The size of the epsilon
test depends on the current dynamic discrete factor.

Figure 9: Expansion of the manoeuvre-based path-finding algorithm using dynamic discrete step
length in the limited 2D world demonstrating landing scenario.

For each newly connected search manoeuvre, the possibility of replacing this search manoeuvre
with a smoothing search manoeuvre is tested. The testing process tries to sequentially replace the
path between the previous search manoeuvre and the search manoeuvre being connected. Previous
search manoeuvres are tested starting from the first search manoeuvre of the entire planning task
to the search manoeuvre directly preceding the one being connected. The particular smoothing
search manoeuvre is used only in the case it doesn’t intersect any no-flight zone and its length is
not greater than the length of the existing path plus the length of the added search manoeuvre
that is supposed to be replaced (smoothed). The search smooth manoeuvre is always as short as
possible between its end points. Thus this replacement can only provide shorted connection and/or
connection with less necessary flight plan elements which leads to better g criterion value.

The prize of path g is calculated as the length of manoeuvres including the current one. The
value of heuristics h is calculated as the length of the theoretical combined shortest smooth search
manoeuvre between two points, from the end point of the current manoeuvre to the global des-
tination point. The use of smooth search manoeuvre as a heuristics predictor provides the best
satisfiable heuristics function for the search problem. It also covers the situation when current end
point is too close to the destination but has wrong direction which doesn’t allow to reach the final
point in that small distance due to the constraints given by the plane model.

The algorithm terminates upon removing the search manoeuvre reaching the final destination
(both in the position and direction without any tolerances) from the OPEN list or upon emptying
the OPEN list. If the path is found, i.e. if the search manoeuvre most recently removed from
the OPEN list reached the destination point, the actual path is generated using a backward trace,
where simple flight manoeuvres are converted to flight plan elements. The algorithm takes always

22

January, 2008 FA8655-06-1-3073 Final Report

the search manoeuvre with the lowest value g + h from the OPEN list.

The implementation of the search algorithm and testing line methods for airspace definition is
very efficient and uses all known algorithm programming techniques. The whole searching process
for the shown examples takes only couple of milliseconds. Next expansion example in the Figure
9.

6.1.1 Simple Search Manoeuvres

This section briefly presents all simple search manoeuvres used within manoeuvre-based path-
finding algorithm:

• straight flight – basic search manoeuvre following a straight line,

• horizontal turn – search manoeuvre following a section of a circle lying in a horizontal plane,

• climbing/descending – search manoeuvre following section of a circle lying in a vertical plane,

• spiral – climbing/descending search manoeuvre following a spiral; the x and y coordinates
of the start and end points of the search manoeuvre are identical, the only coordinate that
differs is z (the altitude).

6.1.2 Combined Search Manoeuvres

There are also several combined search manoeuvres used:

• combined flight search manoeuvre towards the desired flight level,

• combined flight search manoeuvre connecting two points – consists of three to seven search
manoeuvres (see Fig. 10, 11 and 12):

– turn towards the destination point (horizontal turn search manoeuvre),
– climb/descent towards the destination point (climbing/descending search manoeuvre),
– straight flight towards the target flight level (straight search manoeuvre),
– spiral flight to the desired flight level (spiral search manoeuvre),
– straight manoeuvre to the target flight level (straight search manoeuvre),
– altitude correction to the target flight level (climbing/descending search manoeuvre),
– optional correction towards the destination point and target direction using spiral search

manoeuvre (combined search manoeuvre connecting two points),
– turn towards the destination point (horizontal turn search manoeuvre),

• combined smoothing search manoeuvre – serves as an element connecting two points with
arbitrary direction vectors; consists of one to three manoeuvres:

– climb/descent towards the desired flight level (combined search manoeuvre towards the
desired flight level),

– flight between two points on different flight levels (combined search manoeuvre connect-
ing two points),

– climb/descent towards the target direction (inverse combined search manoeuvre towards
the desired flight level).

23

January, 2008 FA8655-06-1-3073 Final Report

Figure 10: Combined search manoeuvre between two points on the same flight level

Figure 11: Combined search manoeuvre between two points on different flight levels

6.2 The Time Planning

The flight plan, which is the output of the first phase of planning (spatial planning), constitutes only
the initial sketch of the flight route of an airplane; it does not take into account the time relations
along it and it ignores all the temporal data assigned to the way-points. In the next phase of
planning, the previously planned segments are adjusted so that the resulting flight plan conforms
to the time constraints. As a result, the time of flight through each segment will correspond to the
time constraints defined in the start and end way-point belonging to the segment.

For purposes of the time planning a transformation that converts rather complex spatial plan
to a simpler sequence of so called time constraints was used, i.e. from R4 to R2, where three
dimensions become one that corresponds to lengths of elements (manoeuvres).

The fore-mentioned time constraints can be of two types: point constraints and section con-
straints. More specifically, there are the following six types:

• speed point constraint {vc, s},

• minimal time point constraint {tmin, s},

• maximal time point constraint {tmax, s},

• free point constraint {s},

• constant speed section constraint {l, s},

• free section constraint {l, s}.

24

January, 2008 FA8655-06-1-3073 Final Report

Figure 12: Combined search manoeuvre between two points on different flight levels using a spiral

Point constraint of speed defines that the given point s in the plan must be flown through at the
speed of vc. Minimal time constraint defines that the point s must be flown through at time tmin
at the earliest. Similarly, maximal time constraint defines that the point s must be flown through
at time tmax at the latest. Free point constraint has no theoretical purpose and is mentioned here
for the sake of completeness.

Section constraints are applied homogenously to a section of the plan starting with a point s and
of length l. Constant speed section constraint prohibits to change the speed within the particular
section of the plan. It’s obvious that this constraint is used for flight plan elements other than
straight ones which do not allow speed changes (turns and spirals). Free section constraint is
used for filling space with no constraints (for straight elements). An example sequence of time
constraints and the source plan can be seen in Figure 13.

A sequence of time constraints generated this way is subsequently used as the input for the
actual time planning algorithm. The task is therefore explicitly defined by this sequence.

Similarly to the algorithm of spatial planning (Section 6.1), the time planning algorithm is
based on particular elements’ chaining. In the case of spatial planning these elements were search
manoeuvres, in case of time planning they are time plan elements, or in short time elements. In
contrast to spatial planning, time elements are not expanded using algorithms for state space ex-
ploration (such as A*). Instead, they are only suitably chained one by one, with pre-calculated

25

January, 2008 FA8655-06-1-3073 Final Report

spatial plan

sequence of time constraints

speed constraint

point constraintsection constraint

minimal time constraint

T T T TTA AS S S

C C C C C C C

Figure 13: Example of the sequence of time constraints and its respective source spatial plan.
(T - turn, A - climbing / descending, S - straight flight, C - constant speed)

parameters. In contrast to the spatial planning, it can therefore never happen that a single ma-
noeuvre is expanded to many potential successors. Elements of the time plan always have just a
single successor (expect for the last one which has no successor at all).

Time elements, as much as spatial search manoeuvres, have a start point s (in the fore-

mentioned space R2, where point
(
t
s

)
has one time dimension t and one space dimension s)

and initial speed v. Similarly to spatial search manoeuvres, most time elements have additional
parameters and there are also defined expressions for calculation of the destination point se and
target speed ve.

The time planning algorithm operates in so called sequences of time constraints. Each sequence
contains an arbitrary number of time section constraints and one point time constraint at the end.
Point constraints inside the sequence are not permitted as they would break the sequence into
two. The point constraint at the end defines the type of the sequence and thus also the planning
method. An example sequence (see Figure 13) depicts two sequences. The first consists of five
section constraints (2 constant speeds, 1 free and 2 constant speeds again) and a minimal time
point constraint at the end. The sequence is therefore a minimal time sequence. The other one
also consists of five section constraints (1 constant speed, 1 free, 2 constant speeds a 1 free) and is
a speed sequence.

Sequences are planned in successive steps. The algorithm connects the time elements so that
the section constraints are fulfilled and so that the point constraint at the end of the sequence is
fulfilled as closely as possible. Time elements are connected continuously speed-wise and smoothly
direction-wise.

If time elements cover the entire sequence of time constraints, or if planning of all sequences
is over, the time plan has been generated and can be transformed to a spatial plan, i.e. planned
increments and decrements of speed are added to the spatial plan. Optionally, slow-down spirals
are inserted. At that point, the flight plan is completed and ready for use.

26

January, 2008 FA8655-06-1-3073 Final Report

7 AGENTFLY Architecture Overview

The AGENTFLY system is fully written in JAVA language. For the visualization purposes it
requires external libraries which are open source and are available for several host platforms. Using
JAVA language the system can be easily spread on more host computers with different operating
systems. The system consists of several components, see Figure 14:

Figure 14: AGENTFLY system structure overview.

• AGENTFLY Core System – mandatory component of the system that is responsible for
aircraft simulation and airways planning. All parts of this component are represented by
agents which are running on A-globe JAVA multi-agent platform [1, 13]. This component
also provides data for connection several number of Operator agents which provide real-time
visualization of the system state as well as human system interfaces. The architecture of this
component is described in the Section 9.

• Remote Web Client – optional component allowing remote user to connect and interact
with the AGENTFLY core system. In current version the user can only display information
which he needs. It means that there is not allowed any feedback from the user back to
the AGENTFLY system, e.g. user cannot modify way-point plan (mission) of any aircraft
or insert new flight to the system. Such functionality is provided by the Operator Agent.
The Web Client is simply started by the entering URL address of the AGENTFLY core
system to the internet browser. The client is written in JAVA built up on the JOGL libraries
(Java binding for OpenGL [5]) which are used for accessing graphics 3D acceleration. The
AGENTFLY core system uses Java Web Start application for the client loading and starting.
Before a user can use all features of the remote WEB client, he needs to be successfully logged
with valid username and password. For minimizing network traffic between the remote client

27

January, 2008 FA8655-06-1-3073 Final Report

and the core system combination of HTTP and special binary protocol is used. Remote client
authentication procedure is secured using one-time hashes for password validation. If it is
necessary the whole data communication can be secured using asymmetric cryptography but
it comes with higher processor load requirements. The overview of user interface and data
provided via remote client is in the Section 10.

Figure 15: Example of the Operator Agents dissemination setup.

• Operator Agent – optional component that can provide real-time system state with all
important information in a 3D/2D environment to the user. Provided information layers
depend on its current configuration. There can be running more such agents simultaneously
providing different information with proper access level rights. The detailed description of
the visualization components of the operator agent is provided in the Section 11.

Besides the visualization the Operator Agent is also able to send user commands back to
the system or can be directly connected to the specific aircraft. Thus it is able to provide
human-system interface to the user. The user can then manage aircraft’s way-point plan
(mission) or manage defined forbidden no-flight zones. It is regular A-globe agent which
receives requested real state information using topic messaging. Direct connection to the
aircrafts is realized via operator control channel on the top of the standard agent communi-
cation language (ACL) messages. Detailed description of the human-system interface of the
Operator Agent is in the Section 12.

All system components can run on the same host computer or the system can be spread on
more hosts for simultaneous simulation of huge number of aircraft. Components requirements for
host machine are specified in the Section 20.

28

January, 2008 FA8655-06-1-3073 Final Report

The Figure 15 presents AGENTFLY system configuration with more Operator Agents running.
Each A-globe container can run in own JVM on different host computer. It is possible to connect
Operator Agent providing visualization and/or operator function remotely. Connection of remote
container to the topic messaging is allowed thanks to its bridging by the set of A-globe topic
bridge services. Only requested topic layers are transferred to the remote containers.

29

January, 2008 FA8655-06-1-3073 Final Report

8 Integration of External Data Sources

The AGENTFLY system has been integrated with real world data. External data are taken from
free internet resources of various GIS data for the area of the United States. Data from several web
sites were parsed, filtered and merged together to serve as a database for our simulation system.

• Landsat7 Images – a mosaic of Landsat7 images at the maximum resolution of approxi-
mately 50 meters per pixel was used as an underlying ortophoto map of the United States.
The source data for this layer were collected from http://onearth.jpl.nasa.gov. For pur-
poses of performance optimization and data flow reduction, the original satellite images had
to be split into uniform tiles of 512 × 512 pixels. The same image mosaic was generated
in multiple resolutions to allow seamless zooming in and out of the virtual map. Since the
data for this layer consist of about 1.7 gigabytes of JPEG-compressed images covering the
entire area of the United States, a sophisticated system of switching between image tiles and
multiple resolution representations was the only and the best way to manage such amount
of data. See Figure 16.

• State Boundaries – detailed vector shapes of 50 U. S. state boundaries obtained from
http://seamless.usgs.gov. Extensive post-processing of the data had to be carried out as
the source data contained a lot of shape redundancies and duplicities. See Figure 16.

Airports – a set of more than 650 U. S. airports, including their names, GPS coordinates
and the corresponding average numbers of enplanements per year obtained from the site
http://seamless.usgs.gov. The size of the airport icon reflects the average number of
enplanements per year. See Figure 17.

No-flight Zones – for the purposes of the simulation we decided to use U. S. powerplants
to act as the no-flight zones. A set of more than 80 U. S. powerplants, including their names
and GPS coordinates was derived from the data available at http://geonames.usgs.gov.
See Figure 17.

Cities – a set of more than 24 thousands U. S. populated places, including their names, GPS
coordinates and the corresponding population obtained from http://geonames.usgs.gov.
The size of the city icon reflects the size of the population. See Figure 19.

Highways – a set of more than 26 thousand major U. S. highway segments derived from the
data available at http://seamless.usgs.gov. See Figure 19.

Real Air Traffic – nearly real-time data of the current air traffic over selected U.S. airports
updated periodically from internet sources. This data layer is used as input for testing the
NFZ-based non-cooperative collision avoidance algorithm as described in 18.

30

January, 2008 FA8655-06-1-3073 Final Report

Figure 16: GIS data layers: Landsat7 images and U. S. state boundaries

Figure 17: GIS data layers: airports (left) and no-flight zones (right)

Figure 18: GIS data layers: cities (left) and highways (right)

31

January, 2008 FA8655-06-1-3073 Final Report

Figure 19: Real air traffic over L.A. International Airport

32

January, 2008 FA8655-06-1-3073 Final Report

9 Core System Description

Agent-based AGENTFLY core system encapsulates one server component running components
for environment simulation (described in the Section 9.1) and one or more A-globe platforms for
running UAA containers, Figure 14. One of the A-globe containers in each JVM is used as a
registration unit for starting UAA container (described in the Section 9.2). When AGENTFLY
system is used for the simulation of huge number of aircrafts it is highly recommended to use more
host computers running A-globe. There is no reason to start more JVMs on the same host. It leads
to the higher resource requirements consumed by JVM processes. If there is no A-globe platform
registered, the UAA containers are automatically started on the same host with the server.

In the situation when AGENTFLY system is started on the two or more host computers, it
is useful to run server component separately on the one computer and rest computers has one
platform A-globe container on each of them. The number of running UAA containers on the more
registered platforms is proportionally split among them. By this way the AGENTFLY system
balances the overall load among all registered hosts.

9.1 Server Components for Environment Simulation

The server component of the AGENTFLY core system is sole central element of the system used for
the environment simulation. It simulates positions of aircrafts and other objects in the simulated
world, aircraft hardware, weather conditions, communication ranges given by range of board data
transmitters, etc. When the proposed distributed agent system for flying on collision-free airways
is used to control real aircraft assets, this environment simulation components will be removed and
will be replaced by real sensors and actuators of the assets.

One of the simulation components is also responsible for acquiring and fusion of information
about all planes with freely available geographical and tactical data sources (see section 8) and
provides them to both remote WEB client (section 10) and operator agents (section 11). It works
also as a scenario player which takes care of creation of new aircraft with a rough plan mission in
specific time moment.

The server component, figure 20, consists of several agents:

• Configuration Agent – handles configuration of the AGENTFLY system. User can easily
select current configuration from the combo box in its user interface. It loads initial selected
configuration and distributes all necessary information to the other agents. The configuration
agent allows user to change the configuration within running AGENTFLY system. If the
AGENTFLY system is running on more host computers, the configurations are distributed
from the computer where the configuration agent is. User of the system can easily modify
configuration and restart the simulation again without copying changed files to all other
computers.

• Entity Manager Agent – administrates connected A-globe platforms and running aircraft
containers, starts new or removes existing planes, gives initial flight mission to the plane.
Depending on the current system configuration scenario player modules are loaded. Each
module can start new or remove existing aircraft, and provide also its initial configuration.
There are several prepared scenario players:

– general – plays scenario exactly as specified in the scenario script file. It can have more
instances simultaneously playing different script files,

33

January, 2008 FA8655-06-1-3073 Final Report

Figure 20: Components for environment simulation

– user startup – has graphical user interface allowing user to generate new planes in the
simulated world manually,

– experiment – special scenario player used for performing huge experiments. The player
automatically starts more repetitive runs and acquires requested measure values to the
experiment output.

The Entities Admin works as a load balancer among connected host computers where the
AGENTFLY core system is running. The new aircraft container is started on the registered
A-globe platform where there are minimum running plane containers. Depending on the
configuration the selected scenario can be started in the off-line planning, normal or validation
simulation phase (described in the Section 3).

• Entity Simulator Agent – computes true position of the aircraft in the simulated world.
Each entity in the simulated world has assigned one entity behavior model module. It is
responsible for the entity physical location and behavior. For the aircraft model (Section
5.2) we have created AircraftBehavior which contains physical model for jet aircraft and
holds its current flight plan and state. When a plane pilot agent changes some part of the
flight plan, the change is propagated via plane agent to its behavior model running in plane
simulator agent by the difference flight plan update. On the other side the module can be
asked for the plane position in current simulation time. The module is also responsible of
handling collision situations, e.g. free fall simulation. The details about physical modeling
of the aircraft can be found in the Section 5.2.

• Distance Agent – counts euclidian distances between every pair of existing aircrafts using
the positions generated by the plane simulator agent. It also provides euclidian distance in
XY plane and other statistical values, such as minimal separation from each plane and overall
minimal separation among all aircrafts.

• Visibility Collision Agent – prepares A-globe visibility updates [13] for controlling com-
munication restrictions among all aircrafts. It also detects whether there is physical collision
between flying aircrafts. If the collision is detected the aircraft behavior model is notified
about it. The airplanes that had collision with other objects are uncontrollable and they go
down to the ground. Falling aircraft can endanger any plane which flies under it.

• Sensor Agent – represents all radar sensors on aircraft boards. Plane agents can register a
specific sensor within it. The sensor agent sends radar information to the registered agents
depending on the sensor characteristics and aircraft positions and orientations.

34

January, 2008 FA8655-06-1-3073 Final Report

• Applet Server Agent – runs HTTP server, Applet Data server and includes all external
data layer providers. It provides communication interface between AGENTFLY agent sys-
tem and the remote WEB client (described in the Section 10). For allowing access to the
AGENTFLY system from the networks shielded from the internet by the proxy servers the
HTTP server listens on standard TCP/IP port 80 and Applet Data server listens on the port
443 normally used for HTTPS protocol (this port is typically tunneled in such networks).
AGENTFLY system generates cache and proxy control headers for controlling cache content
validity. The Applet server agent has running data layer providers which provide external
and internal content to the remote clients. All integrated external data sources are described
in the Section 8.

All server modules (agents) communicate together using A-globe topic messaging described
in [13]. All used topics are defined in the project class aglobex.simulation.global.Server-
ServerTopicConstants where the description of the topic content can be also found. The commu-
nication between server agents and platform hosted agents also utilizes topic messaging due to its
easy usage without any complicated addressing. In the project class aglobex.simulation.global.-
ClientServerTopicConstants there are defined all topics used for client-server communication.

9.2 A-globe with UAA Containers

As described in the Section 9, first connected A-globe container in each JVM is used as the
registration unit for that JVM. There can be no agent running in this container. The container
acts as a control bridge between entity manager agent and the local JVM where it is running.
Using its system services new UAA container can be started or removed. In one A-globe platform
(inside one JVM) there can run many plane containers or there can be no plane container at
all. If there are more JVMs connected to the system, new UAA containers are automatically
balanced among them. Runtime configuration (number of computers and JVMs) doesn’t depend
on configuration files. The system can be easily started in any configuration by modifying only
starting batches. Design of the UAA container is shown in the Figure 21.

The UAA containers interact with the server components responsible for the environment sim-
ulation via A-globe topic messaging. There is also interaction among UAA containers used for
cooperative deconfliction negotiation using ACL messages among agents. Operator control channel
between Operator Bridge and Operator Agent is direct agent communication too.

9.2.1 Plane Agent

The Plane Agent provides interface to higher-level plane functions. It provides following function-
ality:

• Configuration – provides configuration including UAA type descriptor and initial mission
specification with its way-point plan – time constrained or no constrained (see Section 6.
The type descriptor for the plane holds information about plane capabilities, such as minimal
and maximal flight velocity, acceleration, declaration, minimal turn radius, max angle for
changing altitude (flight level), weight, etc.

• Radar – sends information gathered from the UAA on-board radar. There are transmitted
information about actual position of observed objects. The information is repeatedly updated
after each radar scan.

35

January, 2008 FA8655-06-1-3073 Final Report

Figure 21: A-globe with UAA containers

• Time – broadcasts timestamps.

• UAA Control – provides flight plan execution and can be requested for the current UAA
position and state. The executed flight plan can be changed at any time by sending differential
update for the current flight plan. Only future part of the flight plan can be changed.

• Operator Bridge – sends debugging information to the specific graphics layers in the operator
agent and provides bi-directional communication interface between operator module running
in pilot agent and appropriate operator user interface.

In the AGENTFLY system the plane agent provides interface to the simulated environment.
The plane agent can be replaced by other version which will provide interface to the real UAA
sensors and actuators for controlling the UAA motion.

36

January, 2008 FA8655-06-1-3073 Final Report

9.2.2 Pilot Agent

The Pilot Agent is the main control unit for the UAA. It provides control for its operations. Several
subsystems are included:

• Flight Planning – is used for the detailed flight plan planning and replanning on the requests
generated by other modules. It interacts with no-flight zones manager. Its planning must
respect all currently known forbidden no-flight zones. Its functionality is described in the
section 6.

• No-flight Zones Manager – manages the airplane airspace definition, see the Section 4.3.
The zones are grouped into three categories depending on their purpose: world, static and
dynamic. The octant tree and height-map representation of the zones can be pretty large
data structures, thus the zone manager implements sharing of the basic zones representation
among all managers running within the same JVM. Only the zones which shape is never
updated during one simulation are shared.

• Entity Controls – is modular architecture for multi-module entity control. Which modules
will be created after UAA start is given by the UAA configuration, but the number of the
running control modules can vary during UAA operation. All control modules can generate
current flight plan changes, which will be applied depends on the modules priorities. Modules
can use radar notifications and communication interface provided by entity control. Currently
there are three modules:

– Collision Avoidance – provides collision avoidance ability for the UAA. It processes
notifications about new visible object(s) on the radar. Within cooperative mode it tries
to communicate with respective pilot agent if there is any. It is also responsible for
collision detection between its flight plan and the other flight plan part (see section 14).
Within non-cooperative mode it monitors and predicts future possible positions of all
visible objects. Using no-flight avoiding mechanism it tries to replan its flight plan to
collision free one, describe in the section 15.
It is implemented as a multi-layer collision avoidance module which allows to use several
types of collision avoidance methods simultaneously. It is described in the section 13.

– Operator Module – is a module that allows human operator to change the UAAs mission
(way-point plan specification) and edit its static forbidden no-flight zones. The detailed
interaction with the human operator interface is described in the section 11.

– Group Coordination – is used for the collective flight, see the Section 16. It does in-
ner group synchronization – decides if and where to take a holding orbit to wait for
delayed airplanes, performs precise composition and decomposition of the flight for-
mation package and guarantees collision-free paths in this phase. Besides inner group
synchronization it provides also outer group-to-group synchronization – identifies which
rendezvous points should be used in the case of concurrency.

37

January, 2008 FA8655-06-1-3073 Final Report

10 Web-based Access

The AGENTFLY simulation state can be accessed using a Java client web application that is
via the network connected to the simulation system acting as a server and providing to all its
clients regular data updates. This way, a number of users can concurrently observe and interact
with the same simulation. Accessing the simulation system via the network is as simple and
straightforward as opening a web browser and entering the IP address of the computer on which
the A-globe simulation system is currently running. More specifically where the Applet Server
Agent is running.

Figure 22: The dialog for authentication of the user to the web AGENTFLY component

Before the user can access the simulation, he needs to log in the system by entering a valid user
name and password as shown in the Figure 22.

In the top right hand corner of the screen (see the Figure 23) there is located an icon palette
which gives the user access to application controls:

Layer Menu – allows the user to switch on and off various data layers in the main view.
There are currently data layers representing all integrated external data as described in the
section 8 and the layers presenting the internal AGENTFLY system state presented in the
Section 10.1.

Zoom to Region – allows the user o zoom to a specific region (state) by selecting it from
the list.

Locate GPS – allows the user to move to a specific location by entering its GPS coordinates.

Zoom to Selection – lets the user zoom to a specific part of the scene by selecting a
rectangular area with the mouse.

38

January, 2008 FA8655-06-1-3073 Final Report

Figure 23: The AGENTFLY web interface

Zoom to Airplane – allows the user to zoom to a specific airplane by clicking on it.

Toggle Coordinate Grid – allows the user to toggle the GPS coordinate grid.

Logout – allows the user to log out from the system.

The user can also use the keyboard to navigate in the main view:

• arrow keys – scroll/pan the view,

• PageUp, PageDown – zoom the view in and out.

As the user changes the view, the appropriate data segment of the virtual map is requested and
downloaded from the server, and therefore at any moment the client needs to keep only a minimal
amount of data, which results in its fast and efficient performance.

10.1 Internal Data Layers

Apart from the integrated GIS data layers from the external data sources (listed in the Section
8), there are also several internal AGENTFLY data layers that are generated and updated by the
simulation system in runtime:

Airplanes – a layer of airplane icons represents each airplane’s type, current position and
direction. See the Figures 23 and 25.

39

January, 2008 FA8655-06-1-3073 Final Report

Figure 24: Web access component user view including the weather information

Rough Flight Plans – also called way-points (or mission specification), these plans are
series of points in space through which the airplane is supposed to fly on its way. These are
displayed as dotted poly-lines in the screen. See the Figure 23.

Detailed Flight Plans – these plans are the actual routes that the airplanes follow. These
are displayed as solid poly-lines in the screen. See the Figures 23 and 25.

• Weather Information – weather conditions in the local area are displayed in the status
line at the bottom of the screen. See the Figures 24 and 25.

40

January, 2008 FA8655-06-1-3073 Final Report

Figure 25: Flight plans avoiding the no-flight zones

41

January, 2008 FA8655-06-1-3073 Final Report

11 Visualization Component

The Operator Agent, which is an optional component of the AGENTFLY system, allows the human
operators to work with the system. This section describes its internal architecture and capabilities
for visualization of the system state. Its support for the human-system interface is described in
the Section 12. Depending on its current configuration it can provide real-time system state with
all important information in a two or three dimensional space to the user.

There can be more operator agents connected to one AGENTFLY system at the same time.
Different operators’ configurations are shown in the Figure 15. It is possible to connect an operator
agent remotely within the intranet network. In such configuration all necessary and requested
information providing real-time system state are bridged via the Topic Bridge Services. They
allow to transmit and share requested data between the system and a number of operators. Each
connected operator can be configured using different operator configuration depending on the user
access level of an authenticated user. The operator agent can connect to and disconnect from the
AGENTFLY system at any time of the simulation.

Figure 26: Layer architecture of the visualization component – Operator agent

11.1 Layer Architecture

To enable simple configuration of different functions provided by the operator agent, it utilizes
the concept of layer architecture, see Figure 26. The main part of the agent is the GUI Interface

42

January, 2008 FA8655-06-1-3073 Final Report

module providing access to the graphics acceleration via a set of the graphical objects inserted in
the scene tree which holds information about rendering camera mode/position and all objects in
the scene including their properties.

The GUI Interface is built on the top of JAVA-3D framework. This part of the operator
agent is responsible for visualization window management. It also parses all window resizing or
closing events triggered by the user. Besides the interface for displaying graphics objects in the
presentation form to the user in its window the GUI module also provides user input events back to
all layers. For example, if a layer wants to receive all mouse events related to the specific graphics
object (or a group of objects), it simply registers a mouse listener to the respective scene object.

The camera in the scene graph can be configured to automatically parse users inputs to provide
basic functions for changing its settings, such as zoom, scroll/pan/move/change direction the view
and switch between its two and three dimensional mode. If the camera object is in focus, the user
can use M, Z and Z keys, arrow keys, PgUp/PgDown keys, plus any of the fore-mentioned keys
combined with the Shift key, for such actions. The camera pan and zooming in two dimensional
mode can be controlled by the mouse too.

Figure 27: Visualization component in two dimensional mode

The Configuration module takes care of the current configuration and starts or finishes re-
spective layer modules. For simple implementation of new layer modules there is a standardized
interaction interface among operator agent’s components and layers. Each layer module is respon-
sible for subscribing and unsubscribing necessary data from the AGENTFLY system that it would
like to present to the user. If a layer module wants to provide more complicated functions to
other modules, it can simply do it by its public methods. Each layer module can handle special
simulation modes such as the off-line mode, see the Section 3. Within this mode the simulation
speed is automatically adapted to the current system load. When the load increases the speed of
simulation is decreased and vice versa. This mechanism allows to simulate specific scenario as fast
as possible without overloading the system and thus skipping critical situation. In such mode it is
not necessary to display all system state in real-time.

There is a set of special system layers providing various functionality, for illustration of their
visualization form see Figures 27 and 28:

43

January, 2008 FA8655-06-1-3073 Final Report

Figure 28: Visualization component in three dimensional mode

• Time – displays the current simulation time. It is shown at the left top corner of the window.

• Current simulation speed – displays the current simulation speed, but can also parse user
input to change the simulation speed. By default, by pressing the number pad plus or minus
keys, the simulation speed is increased or decreased. Alternatively, by using the number
pad star key the simulation can be paused or start again. The current simulation speed is
displayed above the current simulation time.

• Toggles – displays the visualization state mode for the registered layers at the bottom of
the window. Each layer module can register one or more toggles with a defined number of
visualization states to the toggle layer. When the user presses an assigned short cut, the
toggle mode is changed and the respective toggle listener is notified about the mode change.
This way the user can simply enable or disable visualization of particular graphical layers. It
is fully in the responsibility of such module whether it will unsubscribe data which are not
displayed at the moment.

• Coordinates – shows the current pointer position in the world system coordinates with
pre-configured units. The pointer position is shown only if the visualization is now in the
two dimensional mode and the pointer is within the bounds.

• FPS – is used for the debug purposes to check that all necessary graphical components works
properly. The graphics screen is redrawn only if something is changed. To reduce maximal
load there is specified maximum allowed FPS for the visualization. E.g. if the simulation
is paused and no user control is done, the visualization is redrawn only once per second to
update visualized simulation time value.

The rest of the implemented modules can be categorized into two groups. The first group
presents system state information to the user and is used only for the visualization purposes,
described in the Section 11.2. The second group provides interface for the human operator mode,
described in the Section 12.

44

January, 2008 FA8655-06-1-3073 Final Report

11.2 Presentation Layers

Ground Layer displays the ground surface in the simulated world to the user. It can show simple
flat grounds with a grid or a complex one, e.g. the mountainous area used in the operator scenario
(see the Figure 29). The example shows a large area with many details. The ground is divided into
many blocks and each block has a defined number of levels of details similarly to the description
mentioned in the entity layer.

Figure 29: Ground layer displaying simulated mountainous world

World Objects Layer can display any static object in the simulated world. Some of them can be
seen in the Figure 29. It has its own configuration with information specifying the object models
and their location in the world.

Skybox Layer is able to show any background textures behind the defined world in the visual-
ization. The skybox is constructed as a standard large cube, thus six textures are mapped to each
of its side.

No-flight Zones Layer gives information about no-flight zones defined in the system. A no-flight
zone encapsulates the airspace where flying is forbidden. In the two dimensional mode top view it
is displayed as an orange circle (or another respective shape) and in the three dimensional mode
it is shown as semitransparent orange cylinder (or another respective object) in the scene.

Entity Layer is an important presentation layer that shows position and orientation of all simu-
lated or imported aircraft. As the visualization is required to cope with as many as hundreds of
airplanes, massive optimization of the visualization especially in three dimensional mode is used.
One of the key features is the incorporation of multiple levels of detail (LOD) for all 3D mod-
els (Figure 30). For closeup views, the 3D models contain as many details as possible in order
to look realistic. But as the camera moves further away, the detailed models are replaced with
rougher and therefore more lightweight versions. For wide shots, the 3D models consist only of a
few polygons and thus they can be rendered very fast. Text description can be displayed next to
each visualized aircraft (Figure 27). The entity layer module also provides a set of interfaces that
other modules can use to register creation, coloring and selection listeners with specific entities.

45

January, 2008 FA8655-06-1-3073 Final Report

The subscriber is simply notified when the user performs a specific action over the respective scene
object representing such entity.

Figure 30: Multiple levels of detail of the same 3D model

Actions Layer presents actions taken by the entity in the form of an icon floating above the
model. This form of presentation helps the user to understand what actions are performed by the
entity at any moment. Such actions are defined for all implemented collision avoidance algorithms
as well as a collision, mission way-point fulfillment, flight plan replanning and many other events.

Flight Plans Layer uses the selection interface of the entity layer to display the current flight
plan which is executed by the selected UAA. Flight plans executed by all other UAAs visible on the
selected aircraft’s on-board radar are also visualized. In the two dimensional view, the flight plans
are displayed as the colored solid poly-lines that interpolate through the intended route (Figure
27). In the three dimensional mode, flight plans are visualized as semitransparent corridors of a
rectangular profile (Figure 28). Using the coloring interface of the entity layer the flight plan can
have the same color as the text description of the UAA.

Waypoints Layer presents the current flight mission of the selected and highlighted aircraft. It
is displayed as a set of vertices in the space that are interpolated by dotted poly-lines. There is a
text description for each vertex containing its name and time constraints if there are any specified.

Non-cooperative Zones Layer displays all dynamic no-flight zones defined by the currently
selected airplane that encapsulate other non-cooperative aircrafts. There can be several zones
displayed at the same time as shown in the Figure 31. The zone is displayed as a semitransparent
orange object representing the cover border of the dynamic no-flight zone. The shape of the zone
can be very complex and therefore it is automatically reduced (approximated) to be rendered

46

January, 2008 FA8655-06-1-3073 Final Report

quickly.

Figure 31: Non-cooperative dynamic no-flight zones around non-cooperative aircrafts

Communication Layer gives a good view of the current negotiation activities among simulated
entities to the user. When there is a communication message transmitted between two airplanes
(which can occur only in case that they both fall into the visibility range of each another) there is
a green line drawn between the displayed objects.

Accessibility Layer provides an info about currently accessible entities. The grey line between
entities shows that those two entities can communicate together. If there is no line shown their
communication is not allowed.

Universal Visualization Layer is an open layer component used to display various user infor-
mation different forms to the user without implementing specialized visualization layer. The user
uses a local graphical canvas to construct the object for the visualization and this manipulation
structure is responsible for its transformation and transmission to all appropriate Operator Agents.
If no such data are requested it doesn’t do the transformation and only registers the requests for
drawing for their later usage. There are provided several graphics objects: box, group, line, linked
object, point, color, text and transform graphics. Using linked graphics the user can link the final
graphics to the specified entity (e.g. the entity name is always on the right side of the entity). This
universal layer is used for many different information provided now in the AGENTFLY, e.g. fuel
status, altitude info, predictions from non-cooperative collision avoidance, etc.

47

January, 2008 FA8655-06-1-3073 Final Report

12 Human System Interface

The Operator agent described in the Section 11 can be configured to provide interface for human
operator commands. In such configuration, the user can actively interact with the AGENTFLY
system. Currently there are three main functions provided: the user can manage a way-point
mission for each aircraft (section 12.1); the user can change the current settings for the collision
avoidance submodule implementing multi-layer deconfliction mechanisms (section 12.2); and static
forbidden no-flight zones management for a group of UAAs (section 12.3).

On the operator side these functions are implemented as the regular layer providers (Figure
26). The operator layer utilizes a mouse event listener provided by the entity layer. All functions
are activated when the user right-clicks on a specific aircraft in the visualization. This works in
both visualization modes, two and three dimensional. After receiving such event the operator layer
displays local pop-up menu allowing the human operator to select a specific function.

To provide clear way of communication between human operator layer and the pilot agent
controlling the UAA, all communication uses agent communication language (ACL) messages sent
directly between the layer and the UAA container (see the Figure 14). The Figure 21 presents how
the operator control message flow is handled in the UAA container. All messages are tunneled via
the operator bridge submodule of the plane agent. This architecture allows to replace the plane
agent once the pilot agent is deployed to the real UAA hardware. In such case its operator bridge
submodule will work as an interface to the radio transmitter connected to the human operator.

As described in the section 9.2.2, the pilot agent has modular architecture for the multi-module
entity control. If such simulated UAA is able to interact with the human operator, there are
operator modules loaded that provide end functionality for all provided functions. Depending on
the configuration each UAA can provide a different set of functions, similarly to the operator agent.

Each UAA is in one of the following operation states:

• Parking – the UAA is not operating at the moment, it is staying on the ground and waiting
for the future operation.

• Take off – the UAA executes specific flight plan sequence used for taking off from the airport
to the full operation mode in the airspace.

• Full operation – the UAA is able to fulfill its mission. The mission is defined as a sequence
of way-points with specified position. Each way-point can have a time constraint as described
in the section 4.

• Land – the UAA executes specific flight plan sequence used for landing on the airport.

The collision avoidance module of the pilot agent is active only in the full operation mode in
the airspace. So it means that this module cannot be used for collision avoidance within ground
taxiing. Also the collision avoidance during take off and landing phase of the flight must be solved
for example by the local airport management. These two collision avoidance cases are not in the
scope of the AGENTFLY project now.

12.1 Mission Management

The mission management functions enable the human operator to alter the current way-point
mission for each UAA. Mission way-points specifying points to be fulfilled by the UAA can be

48

January, 2008 FA8655-06-1-3073 Final Report

edited only if the pilot agent is in the parking or full operation mode.

Figure 32: Negotiation between the operator agent and the UAA within the mission edit function

The diagram in the Figure 32 shows the interaction flow in the mission management function:

• When the human operator requests the edit mission function from the context pop-up menu
of the UAA, the layer sends a request for the current mission way-point plan to the pilot
agent.

• Depending on the state of the UAA the pilot agent responds back with current way-point or
a failure message. The pilot agent sends a failure when it is in the take off or landing mode.

• If the operator receives a failure message, it displays a warning that the mission cannot be
altered right now. Otherwise it parses the current mission way-point plan and starts frames
for the mission editing process.

• At this point the human operator can freely remove any previous way-point or insert a new
one. The operator agent provides a user friendly interface to manage the mission. When
a way-point is selected from the list, the way-point position is automatically highlighted in
the world map. When the user wants to insert a new way-point, it can be inserted either
directly by its coordinates and altitude or its position can be selected interactively in the
map. The user can also select a way-point from the list of predefined points-of-interest. The
last way-point for the UAA can specify the return landing airport. If there is no destination
airport specified, the UAA automatically adds a way-point of the last airport from which it
started to its way-point list. At any moment the user can cancel editing without applying
changes.

49

January, 2008 FA8655-06-1-3073 Final Report

• When the user applies the changes, the new future way-point list is constructed from the
user input and a way-point plan change request is sent to the pilot agent.

• Then the pilot agent tries to make a detailed flight plan from its current position fulfilling
the requested way-point sequence. The flight plan re-planning process must still respect the
UAA parameters, the world geography and the defined static forbidden no-flight zones. If
there is an unreachable way-point, the pilot agent reports an error back to the operator
agent. If the re-planning process finishes successfully with no exception thrown, the all-done
message is reported back to the operator agent.

• If everything goes well, the mission of the UAA is changed and the mission edit is finalized.
If there was a re-planning problem with an unreachable way-point, the problem is reported
to the human operator and he can continue to edit the mission and solve possible problems.
In such case the interaction protocol resumes its execution at the edit action again.

12.2 Switching the Collision Avoidance Method in Real-Time

The operator agent provides special function for changing the current collision avoidance methods
used by the UAA. The human operator simply selects the desired collision avoidance configuration
from the local pop-up menu of the specific UAA. The collision avoidance configuration defines which
collision avoidance solvers will be used and how by the multi-layer collision avoidance architecture.
The possible configuration is described in the section 13.

Interaction between the operator agent and the UAA is quite simple:

• When the user requests to change current collision avoidance setting, the operator agent
sends a request message with the desired new multi-layer collision avoidance configuration
to the pilot agent.

• The pilot agent checks if the configuration can be changed at this moment. If so, it simply
restarts the collision avoidance module of the pilot agent with the new requested configuration
(see Figure 21). Then it sends the all-done response back to the operator agent. Otherwise if
the configuration cannot be changed now, it sends a failure message back. The configuration
can be changed only when the UAA is in the full operation mode due to the fact that its
functionality is enabled only in this mode.

12.3 Static No-flight Zones Management

As described in the section 9.2.2, each UAA can have several types of forbidden no-flight zones
defined: world zones, static zones and dynamic zones. Static zones encapsulate world areas where
the UAA cannot operate, e.g. enemy forces area, etc. These zones can be altered by this function
of the operator agent.

static zones can be shared by a group of UAAs. In such case the static zones are edited for
all respective UAAs at the same time. The static zones for the UAA can be edited only when the
aircraft is in the parking or full operation mode.

The interaction flow in zone management mode is more complicated. Besides the operator
agent and UAAs’ pilot agents there is also a zone manager entity. This is the entity responsible
for no-flight zones management. It is useful mainly in the simulation, because it allows to share

50

January, 2008 FA8655-06-1-3073 Final Report

Figure 33: Negotiation protocol used for changing static zones for a group of UAAs

common large octant trees with defined no-flight zones among all entities within a single JVM and
thus it allows to save more system resources when more UAAs are simulated on the same host
computer. The interaction is shown in the diagram 33:

• When the human operator requests the zone edit function from the local pop-up menu of an
UAA, the layer sends the request for the current zone group identification to the respective
pilot agent first.

• The operator module of the pilot agent checks if the static zones for the UAA can be altered
now. The zones cannot be changed in the take off and landing mode. It replies back with
the current static zones identification. If the zones cannot be changed now, it sends a failure
message back.

• If the operator agent receives a failure response, it displays a warning message to the human
operator and the operation is canceled. Otherwise, it sends query to all other members of

51

January, 2008 FA8655-06-1-3073 Final Report

the UAA group using the same zone group definition. The query is used for testing if all
other members can also change the zones now (if they are in appropriate modes). The query
is not sent to the pilot agent which has been already asked for the zone group identification.
If there is no other member of the group using the same static zones group, no queries are
sent.

• All pilot agents receiving the query send positive or negative response depending on their
current operation mode.

• The operator agent waits for all responses and if there is at least one negative response, it
displays a warning message to the human operator and cancels the operation.

• If the zone group can be altered now for all UAAs using the same group, the request for the
current zone definition to the zone manager is sent.

• The zone manager sends the zone definition response if the zone group is defined. Otherwise,
it sends a failure message back.

• At this moment, the frames for the static forbidden no-flight zones editing process are shown
to the human operator. And he is able to alter the current definition. He can freely remove
the already defined one or define a new one. The operator agent provides a user friendly
interface to manage a group of zones. When a zone is selected in the list, it automatically
highlights the zone area in the world map. When the user wants to insert a new zone, it can
be inserted directly by specifying the coordinates of its center and radius. Its parameters can
also be easily inserted from the map interactively. The user is also able to select the zone
from the list of predefined zones. At any moment the user can cancel the editing process
without applying the changes.

• When the user applies the changes, the request for definition of a new zone group is sent to
the zone manager.

• It responses back when new zone group is successfully defined.

• Then a test query is sent to all related pilot agents with this changing operation. The query
asks each pilot agent if it can accept the changed static zones. The zones can be accepted if
there is no current way-point in its mission that is not satisfiable after the update, but before
it was.

• To perform such a check, the pilot agent tests if the changed zone definition is available in
its JVM first. If it is not known yet, it simply sends a request for zone group definition to
its known zone manager entity and waits for the definition. Then it makes the definition
available to all other entities within the same JVM.

• At this point, the pilot agent has all necessary information to perform the query test. It
simply starts its flight plan re-planning process from the current position of the UAA. If a
new detailed flight plan cannot be found due to any reason respecting the new static no-flight
zone definition, the pilot agent sends a negative response to the operator agent’s test query.
Otherwise, it sends a positive response.

• The operator agent waits till it receives all responses from all UAAs using the same edited
static no-flight zone group. And then, it tests if there is at least one negative response. If
such response exists, the agent displays a warning message to the human operator saying
that the changed zones cannot be applied now due to the specific reason. Then the editing
process in the operator goes back to the edit zone group point where the user can adjust its
modification again.

52

January, 2008 FA8655-06-1-3073 Final Report

• Otherwise, if there is no negative response to the test query, the operator agent sends a
notification saying that the zone definition is applied to all UAA members using the same
group. And the edit zone group operation is finished from the operator agent side.

• When the pilot agent receives such notification, it simply takes the already re-planned version
of its flight plan which it has from the test after queering. It applies this new flight plan as
the current one for execution.

53

January, 2008 FA8655-06-1-3073 Final Report

13 Multi-layer Collision Avoidance Architecture

We have designed several collision avoidance methods that can be used for collision avoidance of
the autonomous airplanes. In the dynamic environments that requires frequent mission replanning
and in environments with high number of non-cooperative objects, multiple collision avoidance
methods need to be used simultaneously.

The multi-layer collision avoidance module of the pilot agent (see the Section 9.2.2) solves
the future collisions using the combination of different collision avoidance methods. The collision
avoidance module works in the fully distributed manner and doesn’t utilize any central planner
for the collision avoidance of physical entities. The module architecture is domain independent.
Therefore it is ready for the deployment on the autonomous vehicles like airplanes, robots, cars,
submarines, etc.

The next section presents the basic architecture of the collision solver manager. The Section
13.2 describes its configuration in detail and configuration examples are stated in the Section 13.3.

13.1 Collision Solver Manager

Collision solver manager (CSM) is the general module used for the solving of future collisions
between autonomous entities. It is implemented as a plug-in module that can be enabled in
every agent. This module is domain independent and can be used from any agent that offers the
necessary interface needed for the interaction. Its integration to the AGENTFLY to the pilot agent
is described in the Section 9.2.2. The interface between the agent and the plug-in defines following
functions:

• creation/finishing CSM module,

• method for change of the agent’s current plan,

• method that notifies the CSM about agent’s plan change,

• methods for (de)registering/using agent’s radar,

• methods for (de)registering/using agent’s idle task; this means, that module can receive
messages with specified protocol/performative that are unique,

• methods for (de)registering/using agent’s time,

• methods for getting address of other agents (from radar data),

• method to get agent’s position,

• method to get knowledge base,

• some other less important methods.

Parameters used in these interfaces are also generalized. The most important parameter is the
agent’s plan interface that is implemented in each domain in different way. So the CSM can be
used as well with various entities providing that planning interface such as robots, cars, ships,
submarines etc.

54

January, 2008 FA8655-06-1-3073 Final Report

The main function of the CSM is to make the decision which collision will be solved as well as the
decision which solver solves the collision. It is selected from the collisions registered by collision
solvers. The collision solver (CS) is a module that is able to detect and solve future collision.
It can be general in the same way as the CSM or it can by domain dependent – cooperative
collision avoidance solvers can be domain independent but non-cooperative collision avoidance
solvers depend on the selected domain.

In the typical case there are several registered (or one) collision solvers to the CSM. The CS
notifies the CSM about collision when it is detected. More CSs can notify about the same collision
and one CS can notify about more than one collision. The CSM collects all notifications and
selects which one is the most important to be solved. The selected solver gets specified amount of
processing time to solve selected collision. Other collision modules are waiting until they will be
selected or their collision doesn’t exist anymore.

Solving the collision in CS can take a long time. For this reason there is a computational thread
in the CSM and the CS part responsible for the collision solving is started in that special thread.
As a result, the CSM can control the length of the time assigned to the CS (solving timeout) and
process the communication and sensors necessary for the flight during the computation. When
this timeout is exceeded for the selected collision solver, the computational thread is interrupted
and a new collision to be solved is selected.

The CSM is notified when an arbitrary CS detects any future collision. This notification
contains the identifier of the collision object (aircraft), the reference to the solver, the time of the
collision and solver’s data for its private purposes. Only the earliest time is saved for each collision
(identified by that ID). The notification received from the cooperative CS about collision with
non-cooperative aircraft is discarded. The CSM selects a collision to be solved using the following
rules:

• Find the first valid collisions. The first collisions are the earliest ones. Times of the collisions
are taken as the same if the difference between them is less than
SAME COLLISION INTERVAL LENGTH constant. The first collisions are those with the earliest
collision times using this tolerance. The valid collision is a collision registered by the collision
solver that can be selected for solving (i.e. still appears).

• If there is no collision being solved at the moment, the collision with the highest priority is
selected from the set of first valid collisions (as specified in the last item).

• If the time of the earliest valid collision is earlier than the time of the collision which is
currently being solved, solving of the current one is interrupted and the collision with the
highest priority is selected from the set of first valid collisions.

• If the time of the earliest valid collision is the same as the time of the collision that is being
solved, the priority is compared to the the highest priority from the set of first valid collisions.
If the current collision has higher priority, nothing happens. Otherwise solving of the current
collision is interrupted and the collision with the highest priority is selected from the set of
first valid collisions.

• If the time of the earliest valid collision is later than the time of the current collision, nothing
happens.

The CSM selects appropriate collision solver to solve the selected collision (given by the rules
above) using cooperative or noncooperative ordered list of solvers. The difference is counted
between the time of the future collision and the current time. The difference determines which

55

January, 2008 FA8655-06-1-3073 Final Report

collision solver will be used (corresponding time interval in the list is selected). If the selected CS
is a blank solver, it is selected the next CS to the blank solver (closer to future collision).

The CSM counts the maximal time that can be used by selected collision solver to solve the
earliest collision. This time is the minimum of the MaxSolvingTime parameter of the CS and the
rest of the time interval assigned to the selected CS on the defining time axis (see the Section
13.2). If the time for selected solver is shorter than MinSolvingTime parameter of the CS, the next
not a blank collision solver is selected. The counted time is used as an execution timeout. When
timeout elapses, the solving of the collision is terminated.

Current flight plan is set as the fixed (unchangeable) to a change point that is equal to the
timeout assigned to the collision solver. This prevents modification of the flight plan in the history
as defined in the Section 4.2.

13.2 Configuration Description

The collision solver manager is configured by its own configuration xml file that contains a list of
collision solvers. Each solver has following parameters specified:

Name - name of the solver.

ClassName - name of the solver’s Java class. This class is dynamically loaded using Java class
reflection. If the name is blank, no collision solver is used and only empty time interval is
inserted.

Cooperative - determines if this solver can be used for cooperative collision avoidance.

UseInterval - defines the length of the time frame when the CS can be used for solving particular
collision. The zero time represents the unbounded time length and such setting can be used
only for the first CS in the list.

MaxSolvingTime - the maximum processing time that can be assigned to the CS.

MinSolvingTime - the minimum time that the CS needs to solve a collision.

SolverConfigurationConfObjectName (optional) - defines the configuration for the collision
solver.

The CSM preprocesses its configuration during the initialization. There are created two ordered
solver lists - cooperative and noncooperative. The cooperative list contains all collision solvers
defined in the configuration file in the same order as in the list. The non-cooperative solver list
contains only solvers where the cooperative parameter is set to false.

The solver list represents time axis (see the examples in the Section 13.3), where each collision
solver occupies defined part of the axis. The time axis begins at the current time and goes to
the time of the future collision. The collision solvers are ordered in the same sequence as in
the configuration list. The list is filled from the time of the future collision backwards using the
UseInterval parameter as a length of the interval. The rest of the time axis is filled by the first
collision number (see Figures 34 and 35 in the examples). The priority is set to each collision
solver according to its position in the ordered solver list. All collision solvers are started during
the initialization and its collision detection parts run continually.

56

January, 2008 FA8655-06-1-3073 Final Report

13.3 Configuration Examples

This section provides an example configuration of the CSM and its application to the selected
cases. The example is only illustrative to show how CSM handle different situations. The typical
configuration will contain cooperative solvers at the beginning, noncooperative solvers in the middle
and blank solver at the end.

<Solver Name="Solver1"
Cooperative="true"
ClassName="BestandSlowCooperativeSolver"
UseInterval="0"
MaxSolvingTime="10000"
MinSolvingTime="5000"
SolverConfigurationConfObjectName="BASCOOP_CONF"/>

<Solver Name="Solver2"
Cooperative="false"
ClassName="NoncooperativeSolver"
UseInterval="5000"
MaxSolvingTime="3000"
MinSolvingTime="1000"
SolverConfigurationConfObjectName="NONCOOP1_CONF"/>

<Solver Name="Solver3"
Cooperative="true"
ClassName="BasicCooperativeSolver"
UseInterval="10000"
MaxSolvingTime="4000"
MinSolvingTime="2000"/>

<Solver Name="Blank"
Cooperative="true"
ClassName="blank"
UseInterval="7000"
MaxSolvingTime="0"
MinSolvingTime="0"/>

<Solver Name="Solver4"
Cooperative="false"
ClassName="NoncooperativeSolver"
UseInterval="10000"
MaxSolvingTime="2000"
MinSolvingTime="2000"
SolverConfigurationConfObjectName="NONCOOP2_CONF"/>

<Solver Name="Blank"
Cooperative="false"
ClassName="blank"
UseInterval="5000"
MaxSolvingTime="0"
MinSolvingTime="0"/>

• The Solver1 has the UseInterval set to zero. This parameter has no sense for the first CS in
the list.

• The Solver4 has MinSolvingTime and MaxSolvingTime set to the same value. This means
that MinSolvingTime will be always assigned to it exactly to solve the collision.

57

January, 2008 FA8655-06-1-3073 Final Report

• The names of the solvers have to be unique except the blank solvers.

• Solvers can use the same Java classes (e.g. Solver2 and Solver4 uses the same). Different
configurations may be used for each solver.

• The SolverConfigurationConfObjectName is not mandatory parameter.

The Figure 34 shows the cooperative pattern generated from the configuration above. It con-
tains all solvers in the same order. Solver1 has the highest priority.

Figure 34: The cooperative pattern of the configuration related to the time axis.

Figure 35: The non-cooperative pattern of the configuration related to the time axis

The Figure 35 shows noncooperative pattern. It contains only non-cooperative solvers in the
same order as in the configuration excluding cooperative solvers.

Example 1: 25 seconds to the collision

Figure 36: 25 seconds to the collision

The Figure 36 shows the situation when there is 25 seconds left to the collision. The solver3
is selected according to the list of the solvers. The selected timeout for solving is the rest of the

58

January, 2008 FA8655-06-1-3073 Final Report

time until the end of the solver’s time interval on the axis. This means that the solver3 can use
computational thread of the CSM for next 3 seconds. If no solution is found, the CSM interrupts
its execution and starts another solver.

Example 2: 12 seconds to the collision

Figure 37: 12 seconds to the collision

The Figure 37 shows the situation when there is 12 seconds left to the collision. The solver4
is selected. The selected timeout is the minimum from the rest of the time until the end of the
solver’s time interval and MaxSolvingTime parameter. The solver4 has set this parameter to two
seconds. Thus selected timeout will be 2 seconds. Therefore the solver has short fixed part of the
plan and can react very fast. If no solution is found, the same solver can be selected (started)
again after 2 seconds until its time interval in the list of solvers exceeds.

Example 3: 18 seconds left to the collision

Figure 38: 18 seconds left to the collision

The Figure 38 shows the situation when there is 18 seconds left to the collision and the blank
solver is used. The next solver will be selected - solver4. The timeout is the minimum from
MaxSolvingTime (2 seconds) and the rest of solver4’s interval (13 seconds).

59

January, 2008 FA8655-06-1-3073 Final Report

Example 4: 23 seconds to the collision

Figure 39: 23 seconds left to the collision

The Figure 39 shows the situation when there is 23 seconds left to the collision and the solver3 is
used. The timeout assigned to the solver3 should be 1 second. This is less than the MinSolvingTime
parameter of the solver3 (2 seconds). The next non-blank solver is selected - solver4 with the 2
seconds timeout. Any collision solver cannot be selected for execution after the end of its interval
minus MinSolvingTime parameter anymore.

Example 5: 3 seconds left to the collision

Figure 40: 3 seconds left to the collision

The Figure 40 shows the situation when there are 3 seconds remaining to the collision and the
blank solver is used. There is no solver behind this blank solver, so the CSM will not select any
solver. The same situation can arise up to 7 seconds before the collision (5 seconds for the blank
solver and 2 seconds is the MinSolvingTime parameter for the last solver).

60

January, 2008 FA8655-06-1-3073 Final Report

14 Cooperative Collision Avoidance

All implemented cooperative collision algorithms in AGENTFLY system provide a local collision
avoidance, see the definition of the avoidance problem in the Section 4.5. The algorithms are based
on the communication and the negotiation among airplanes. Such algorithms can be used also in
the domain where airplanes can communicate only with planes located nearby (there is limited
communication range). Well known techniques for collision avoidance based on the potential fields
are not suitable for the specified domain (3D, no-flight zones, the need of smooth flight plan also
in its first derivation, allowed speed changes and the fact that the airplane cannot stop) due to
their complexity and because of the complicated dynamic mission airplane specification.

In the AGENTFLY there are implemented three cooperative methods: rule-based (Section
14.4), iterative peer-to-peer (Section 14.5) and multi-party collision avoidance (Section 14.6). All
described algorithms are implemented as collision solvers in the multi-layer architecture (Section
13). The ’See’ ability of the algorithms is the same, see the Section 14.1. It is implemented as the
transponder negotiation task in the AGENTFLY (Section 14.2). The changes of the flight plan
provided by the cooperative algorithms are done via the evasion manoeuvres (Section 14.3).

14.1 Local Cooperative Detection

The see capability [2] in the AGENTFLY is implemented by negotiation and flight plan comparison.
Due to the limited communication range each airplane Ai is aware only of planes located within
this range Aj ∈ Ãi. Ãi denotes the set of airplanes Aj ∈ A of which Ai is aware of. The described
algorithms solve encounters locally where they can be detected. It is not necessary to identify
collision Ai

⊗
Aj for whole fpi and fpj . The airplane can share only part of its current flight plan

f̂pi from current time tc for interval tshare where p(f̂pi, t) = p(fpi, t) for ∀t : tc ≤ t ≤ tc + δt. δt is
selected by the airplane not to expose all its future plan including its mission objectives, but to give
enough part to identify the possible collision. Such local sharing of the flight plans also reduces the
necessary communication flow. The flight plan sharing is implemented by the subscribe-advertise
protocol [14]. Every time when airplane is aware of new other airplane Aj it subscribes for its f̂pj .
The plane Aj , by accepting subscription request from Ai, will provide regular updates of its f̂pj
such there will be enough part of future part of the flight plan from current time. If Aj changes
its fpj for any reason – change of its mission objectives or as a result of other collision avoidance
– it provides new fresh f̂pj to the subscriber as soon as possible.

AirplaneAi who received f̂pj from all its neighbors Ãi performs check if ∃t where col(fpi, f̂pj , t) =
1 upon every received update. If such t exists Ai tries to identify the first and the last collision
point tAi⊗Aj

1 and t
Ai⊗Aj

2 (see the Figure 41). Airplanes are also able to detect multi-collision
group AC by exchanging information about collisions. Ai prepares its local view of an encounter
enAi

k = 〈t, {fpi}
⋃
{f̂pj}Aj∈AC\Ai

〉. Selection of tC1 > t > tc depends on the used algorithm or com-
bination of algorithms and is chosen somewhere between current time tc and time of the earliest
collision tC1 for the given multi-collision C. t− tc defines the timeout which is then given for invoked
collision avoidance algorithm. If the result for C is not provided within the specified timeout, the
algorithm is interrupted and next iteration is invoked for the same C. Note that when the local
cooperative detection the encounter contains full fpi and only parts of f̂pj , but it is enough to do
distributed local collision avoidance. The LCAP algorithm still provides solution containing full
flight plans fpj for ∀Aj : Aj ∈ AC because all flight plans are still provided by its final implementor
Aj .

61

January, 2008 FA8655-06-1-3073 Final Report

time
1

time
2

A

B

Figure 41: Identification of the first and the last collision point between current flight plans of
airplanes A and B.

14.2 Transponder Negotiation Task

The transponder task is used for general communication between the autonomous agents repre-
senting aircrafts in the system. The main feature of the A-globe task [13] is that all incoming
communication from the appropriate opposite task is automatically routed and handled by the
task. The implemented cooperative collision avoidance algorithms use the peer-to-peer negoti-
ation. The task presented in the Figure 42 is used for each pair of negotiating airplanes in the
system. The transponder task is described from the view of the airplane A, but the second airplane
does the same from its point of view. Brief description of the transponder task is below.

Lets suppose an airplane A flying along its planned optimal flight path fulfilling its mission
way-points with their time constrains (described in the Sections 5 and 6). The airplane B enters
the alert zone (radar range) of airplane A. The pilot agent of the airplane A is notified about
its position and the flight code by the on-board radar system, see Figure 43 left. The pilot agent
checks if there already exists transponder task with airplane B. If there is not such a task, it creates
the new one and tries to establish negotiation connection with the pilot agent B by sending initiate
message. This message contains information about the plane type and information if pilot agent
A has airplane B on its own on-board radar system. If the connection cannot be established or
the communication is not trusted, the pilot agent should use non-cooperative collision avoidance
method against the plane notified by the on-board radar, described in the Section 15. Each
transponder task holds information about mutual radar status of involved airplanes. If airplane B
is on the radar of airplane A, true value in the variable onMyRadar in the appropriate task of plane
A is stored. If airplane A is on the radar of airplane B, true value in the variable onOtherRadar
in the same task is stored. The opposite airplane does the same in its own task from its point of
view.

The transponder task of pilot agent A is in the initiating state and is waiting for initiate
message from pilot agent B. When pilot agent B receives initiate message from pilot agent A (and
has no transponder task with pilot agent A), it creates new transponder task to communicate with
airplane A and sends back initiate message. At this moment the transponder task of the pilot
agent B is initiated (working state) and sends flight plan future part for the specified amount of
time depending on the flight speed. When pilot agent A receives the initiate message from the
pilot agent B, it is initiated as well (changes state to working state) and sends its flight plan future
part to the pilot agent B.

62

January, 2008 FA8655-06-1-3073 Final Report

Airplane A Airplane B

ON Radar initiate

initiate

FP update

FP update

ON RadarON radar

the plan is too short

future collision(s) found

detect
future

collisions

deconfliction

request a longer part

FP update

OFF RadarOFF radar

OFF Radar request finish

agree / failed

Figure 42: The transponder task message flow overview.

The transponder task communication flow is protected by the system of timeouts. If transpon-
der task A does not receive initiate message in the specified amount of time, it re-sends its initiate
message again.

It can happen, that initiate message is sent by the pilot agent A, but before it is received by
the pilot agent B, on-board radar system of airplane B detects the airplane A and so the pilot
agent B sends its own initiate message to the pilot agent A. It is possible due to fact, that initiate
messages are symmetric and both of them will serve as answers as well. So both transponder tasks
will be initiated, when appropriate initiate message will be delivered, see the Figure 43 right.

At this moment both transponder tasks are initiated and in the working state. Both sides of
the transponder task can send these messages in this state:

Flight plan message - it is sent every time (i) due to change of its own flight plan, (ii) after the
predefined regular time period expires or (iii) as an answer for the special request from the
other side of the transponder task.

Radar change message - sent when the change occurs in its on-board radar system (other
airplane appear/disappear from the radar).

63

January, 2008 FA8655-06-1-3073 Final Report

Airplane A Airplane B

initiate

initiate

FP update

FP update

ON Radar

ON radar

ON Radar

in
it

ia
ti

ng
 s

ta
te

w
or

ki
ng

 s
ta

te

w
or

ki
ng

 s
ta

te Airplane A Airplane B

initiate initiate

FP update FP update

ON Radar ON Radar

w
or

ki
ng

 s
ta

te
in

it
ia

ti
ng

st
at

e

w
or

ki
ng

 s
ta

te
in

it
ia

ti
ng

st
at

e

Figure 43: Two cases of the initiating sequence of the transponder task: the A detects B first
(left), both A and B detects the other at the same time (right)

Request for the longer plan message - used when the pilot agent needs more information
about the flight plan of other airplane because of its collision detection method (see the
Section 14.1).

These messages can be sent in any order due to the needs of each pilot agent. Every time when the
task receives the flight plan update from the opposite plane it executes the collision detection, see
the Section 14.1. The collision detection process needs to identify the first and the last collision
point between two flight plans. So, in the case that airplanes exchange only local parts of the
flight plans it is possible that the last collision point cannot be identified without having longer
part of the other flight plan. For this reason there is implemented the special request with a longer
part message with the flight plan update response communication, see Figure 42. If a collision
between the current flight plan and received one is found the collision avoidance process is started
(grey block in the figure). This is done by inherited collision solvers, where specific algorithms
are implemented. Currently one of the following methods is used: (i) rule-based (described in the
Section 14.4) or (ii) utility-based (see the Section 14.5).

When some unexpected events occur, it is possible that transponder task receives the not-
understood message. As a reaction, it sends the restart message and new initiate message. When
other side of the transponder task receives the restart message, the set its state to restarting state
and waits for initiate message. The rest of the communication is the same like described above
within the standard initiation sequence.

When airplane (for example B) leaves the alert zone (radar range) of the airplane A, the
pilot agent A is notified about this by its on-board radar system. If the pilot agent A has the
information in the transponder task that airplane A is not on its radar, see Figure 44 left, the task
starts negotiation sequence to finish the task. Its state is changed to the finishing state and the
request finish message is sent. The transponder task does not react to any reaction to any message
(except messages related to finish process), but it remembers them to use them later if needed.

When the transponder task B receives request finish message, it changes the variable onOther-

64

January, 2008 FA8655-06-1-3073 Final Report

Airplane A Airplane B

OFF radar

OFF Radar

request finish

agree

OFF Radar

fin
is

hi
ng

 s
ta

te
w

or
ki

ng
 s

ta
te

w
or

ki
ng

 s
ta

te

Airplane A Airplane B

request finish

failed

ON radar

OFF Radar

OFF radar

OFF Radar

ON Radar

fin
is

hi
ng

 s
ta

te
w

or
ki

ng
 s

ta
te

w
or

ki
ng

 s
ta

te

w
or

ki
ng

 s
ta

te
w

or
ki

ng
 s

ta
te

Figure 44: Left: the standard finishing sequence of the transponder task. Right: the interruption
of the finishing sequence due to the received visible notification from the on-board radar.

Radar to false. When both variables onMyRadar and onOtherRadar are false, the transponder
task B sends back finish agree message and transponder task is removed from pilot agent B. When
the variable onMyRadar is true, transponder task B sends back finish fail message and normally
continues in work, Figure 44 right. This situation can be caused by the distributed nature of the
negotiation. For example the transponder task A had sent the request finish message before it
received the radar change message from transponder task B.

Transponder task A can receive three messages as an answer to its request finish message in
the specified amount of time (before the timeout exceeds):

finish agree message - the A checks again if both variables onMyRadar and onOtherRadar
are false. If so the transponder task A is removed from the pilot agent A and the entire
communication between A and B is closed, situation in the Figure 44 left. If the variables
are not false, restart of communication is processed using the restart message as described
in the previous part, Figure 45 left.

finish fail message - the task A changes its state to working state and processes all messages,
that have been received and remembered during finishing state as described above, Figure
44 right.

request finish message - this message can be received in similar situation like in initiating of
the transponder task. It can happen that transponder task B starts its finishing at the same
time and sends the request finish message before receiving the request finish message from
the transponder task A, Figure 45 right. The reaction to this message is the same like to the
finish agree message.

When the timeout exceeds and no message is received, transponder task A repeats sending of
request finish message.

If airplane A detects the plane B on its on-board radar system during the finishing state, the
transponder communication has to be initiated again. The transponder task B can be already

65

January, 2008 FA8655-06-1-3073 Final Report

Airplane A Airplane B

request finish

initiate

agree

OFF Radar

ON Radar

OFF radar

OFF Radar

fin
is

hi
ng

 s
ta

te
w

or
ki

ng
 s

ta
te

in
it

ia
ti

ng
 s

ta
te

w
or

ki
ng

 s
ta

te
w

or
ki

ng
st

at
e

Airplane A Airplane B

request finish request finish

OFF Radar OFF Radar

fin
is

hi
ng

st
at

e

fin
is

hi
ng

st
at

e

Figure 45: Left: the communication is re-initiated due to the changing the radar state within the
finishing sequence. Right: invocation of the finishing state by both tasks at the same time.

removed, so the transponder task A has to send initiate messages again and new transponder task
B will be created, situation in the Figure 45 left.

14.3 Evasion Manoeuvres

All cooperative algorithms described in the document are based on the application of evasion
manoeuvre to the place of the collision Ai ⊗ Aj – identification of the first and last collision time
of the first collision between their fps. t

Ai⊗Aj

1 is the first collision time between fpi and fpj if
there is col(fpi, fpj , t1) = 1 and ∀t : t < t1 is col(fpi, fpj , t) = 0. The last collision time t

Ai⊗Aj

2

is defined by ∀t : t1 ≤ t ≤ t2 is col(fpi, fpj , t) = 1 and for t = lim
δ→0+

(t2 + δ) is col(fpi, fpj , t) = 0.

For max(rszi, rszj) > 0 is always t2 > t1. Note that the times tAi⊗Aj

1 and t
Ai⊗Aj

2 are the same
from both perspectives Ai and Aj , but the p(fpi, t1) 6= p(fpj , t2).

There are defined seven evasion manoeuvres EMi = {emL, emR, emU , emD, emF , emS , em0}:
left, right, climb up, descend down, fly faster, fly slower and leave plan as it is. The set EMi can con-
tain different manoeuvres for each airplane Ai ∈ A, but there must be included em0 for all planes.
The evasion manoeuvre can be seen as a function applied to the flight plan with time specification
and returning new changed flight plan. The simplest one is defined as fpi = em0(fpi, p, t, t1, t2).
It returns exactly the same fpi and is used for the simplification of cases where airplane Ai can
also do nothing in CA algorithm. All other ems return changed fp′i respecting constraints given
for flight plan and changes elements only from the specified time t – time known from definition of
encounter enk. All manoeuvres are applicable only if t < t1 < t2 and have also specified application
strength parametrization p for the evasion manoeuvre.

The application of the right evasion manoeuver to the fpi is shown in the Figure 46. It changes
fpi from time t that the new fp′i passes through the points specified by moved p(fpi, t1) and
p(fpi, t2) to the right side. The size of the shift is given by the parameter p – for larger p the

66

January, 2008 FA8655-06-1-3073 Final Report

fpi t1 t2

fpi‘

tcurrent
position

Figure 46: Application of right evasion manoeuvre – fp′i = emR(fpi, p, t, t1, t2)

evasion manoeuvre makes larger evasion. The emL, emU and emD are defined similarly to emR

only with different shift direction of the points to the appropriate side. The velocity changing
manoeuvres emF and emS change the flight plan by time t′1 that p(fp′i, t

′
1) = p(fpi, t1). For the

fly faster manoeuvre is t′1 < t1 and for the fly slower t′1 > t1. The application of emF manoeuvre
is restricted by the maximal flying velocity of the plane. The emS manoeuvre is not restricted,
because there can be inserted holding orbit if the minimal flying velocity is reached. The evasion
manoeuvres can be combined together by their sequential application.

14.4 Rule-Based Collision Avoidance

It is the domain dependent algorithm inherited from the common collision solver. The collision
avoidance mechanism is invoked from the transponder task within the collision avoidance block,
Section 14.2. First, the type of the collision between the airplanes is identified. The collision type
is determined on the basis of the angle between the direction vectors of the concerned planes at
time 1 (first collision point found by the collision detector, Section 14.1) projected to the ground
plane (defined by X and Y axis), see the Figure 47.

direction
vector

flight path
center line

2 × 30°2 × 30°

Sector 1

Sector 2

Sector 4

Sector 3

Figure 47: Identification of the collision type in the Rule-based collision avoidance

Depending on the computed angle the plane B is relatively to the plane A it fits into one of the

67

January, 2008 FA8655-06-1-3073 Final Report

four sectors. Depending on this sector, one of the following rules is applied on the flight plan of
plane A to avoid the collision:

• Sector 1 – head-on collision, in this case the planes avoid each other on the right side of
the second one. The plane flight plan is changed as shown in the Figure 46. The pilot agent
shifts the points in the time 1 and time 2 perpendicularly to the old direction vector to the
right. Distance between the previous and the new point is equal to the minimum of the safety
ranges. After time 2 flight plan will continue shortest way to the next mission way-point.

• Sector 2 – back collision, there are two subcases: i) the aircraft which is in front of the second
one is faster – aircrafts do not change current flight plans. ii) The back and faster plane
changes its flight plan so it will pass the front plane on the right side without endangering
the front one. The flight plan is similar to that in the Figure 46. Again the back plane shifts
the old points in the time 1 and time 2 perpendicularly to the old direction vector to the
right at the distance at least 1.1 times of the safety range.

• Sector 3 – the side collision when the other plane has traffic priority. The aircraft needs to
slow down its speed so that it reaches the first collision point later than the second airplane.
If this is not possible due to the minimal flight speed defined for each plane type, the aircraft
slows down as much as possible and shifts the flight point from the first collision point to the
right so that there is no collision between their flight plans.

• Sector 4 – side collision when this plane has traffic priority. The aircraft changes its flight
plan by accelerating up to its maximal flight speed so that it passes the collision point before
the other airplane. The plane only accelerates as much as needed.

The above rule-based changes to the flight plan are done by both planes independently because
the second aircraft detects the possible collision with the first plane from its point of view. After
applying the changes to the aircraft’s flight plan, it sends an updated local flight plan part to all
subscribers (planes located in its vicinity). The change is also verified against all other known flight
plans of all aircrafts monitored by the board radar system. If there is another collision detected,
new changes are applied.

The pilot agent internally uses the flight plan wrapper interface for the manipulation with its
flight plan. The change requests are handled as a special set of solver time-constrained way-points.
Special handling algorithm implements the application of a new change that overrides the old one.
The algorithm decides whether an older solver way-point should be removed or not.

The finding of the stable solution for more than two planes with the collision is given by the
fact that all airplanes use the rule-based collision avoidance method and also use the same set of
collision avoidance rules. In other cases it cannot be guaranteed that the negotiation among more
planes will be finite.

14.5 Iterative Peer-to-Peer Collision Avoidance

This section introduces the iterative peer-to-peer CA used as a provider of comparison result for
multi-party CA. The algorithm solves an encounter enk = 〈t, {fpi}Ai∈AC 〉 by the selection of the
most important collision airplane pairs I = {A1

⊗
A2, A3

⊗
A4 . . .} where each airplane from AC

can be included only once in I. Identification of the set I is done in the distributed manner. Each
Ai ∈ AC selects its opponent Aj from local view of the encounter enAi

k = 〈t, {fpi}
⋃
{f̂pj}Aj∈AC\Ai

〉
(see Section 14.1) using

arg min
Aj∈AC

arg min
t1

col(fpi, f̂pj , t1) = 1 . (1)

68

January, 2008 FA8655-06-1-3073 Final Report

Each Ai ∈ I starts the pair negotiation on removing collision (PNRC) with its colliding opponent
Aj . If there is a conflict – Ai selects Aj which is already negotiating with other airplane Ak –
Aj will finish its current negotiation if and only if tAi

⊗
Aj

1 < t
Aj

⊗
Ak

1 . Note that for the same
times the first selected opponent by Aj will stay. The encounter in which Aj is included can be
changed during its PNRC. Aj stops current PNRC if the solved collision no more exists within
new encounter or there is identified more important opponent to Aj .

Master Slave

request plan generation

generated plans

no
 v

al
id

 c
om

bi
na

ti
on generate

plans

apply
plan

apply
plan

generate
plans

find best
solution

send updates send updates

request plan change

Figure 48: The pair negotiation about removing collision (PNRC) during iterative peer-to-peer
collision avoidance

Within pair negotiation about removing collision (PNRC) (see the Figure 48) these airplane
pairs Ai

⊗
Aj ∈ I prepare a set of possible changed flight plans with their utility value

Fi = {〈fp′i1,ui(fp′i1)〉, 〈fp′i2,ui(fp′i2)〉 . . .} . (2)

First, the flight plans 〈fp′i,ui(fp′i)〉 ∈ Fi are given by the application of all em ∈ EMi to the place
of collision Ai ⊗ Aj using lowest parametrization p first, see the Section 14.3. Note that the set
EMi can contain different manoeuvres for each airplane and there is always included leave plan as
it is manoeuvre em0 for all airplanes. The changed flight plan fp′i of em application is included
in Fi if and only if

∀Aj ∈ Ãi is (arg min
t

col(fp′i, f̂pj , t) = 1) > t
Ai⊗Aj

1 . (3)

Then both planes Ai and Aj exchange their F̂ – local future parts of proposed changes with their
utility values for next δ interval, see the Section 14.1. The utilities stored in F̂ are counted for the
whole flight plan. Ai prepares the negotiation set

SAi⊗Aj

i = {〈fp′i1,ui(fp′i1), f̂p
′
j1,uj(fp

′
j1)〉,

〈fp′i1,ui(fp′i1), f̂p
′
j2,uj(fp

′
j2)〉 . . .}

(4)

69

January, 2008 FA8655-06-1-3073 Final Report

as a cartesian product of Fi and F̂j . Each tuple 〈fp′ik,ui(fp′ik), f̂p
′
jl,uj(fp

′
jl)〉 ∈ S

Ai⊗Aj

i is included
if and only if

(arg min
t

col(fp′ik, f̂p
′
jl, t) = 1) > t

Ai⊗Aj

1 . (5)

If the negotiation set SAi⊗Aj is empty, Ai adds to the Fi flight plans as a result of the application
of the evasion manoeuvres em ∈ EMi using next larger parametrization p. This is done by both
Ai and Aj and new SAi⊗Aj

i is generated. The whole process is repeated until the negotiation set
holds at least one element.

Aj does the same from its perspective and its view of negotiation set SAi⊗Aj

j holds equivalent

elements as SAi⊗Aj

i , but has full flight plan for fp′j and local future parts for fp′i. Both airplanes
Ai resp. Aj propose the solution

arg max
〈fp′ik,ui(fp′ik),f̂p

′
jl,uj(fp′jl)〉∈Fi

ui(fp′ik) + uj(fp′jl) resp.

arg max
〈fp′jl,uj(fp′jl),f̂p

′
ik,ui(fp′ik)〉∈Fj

ui(fp′ik) + uj(fp′jl) .
(6)

If there exist more candidates with the same value of selection criterion, the proposed solution
is selected randomly from these candidates. To agree with one of the two different randomly
proposed solutions they (Ai and Aj) can use protocol based on the commitment scheme known
from cryptography [6].

After the distributed application of all solutions for Ai ⊗Aj ∈ I the last encounter is partially
modified and new one is detected by the local cooperative detection (Section 14.1) and described
peer-to-peer CA is started again. The restrictions 3 and 5 ensure that the possible application of
the solution selected from SAi⊗Aj cannot cause new earlier collision with any airplane’s current
flight plan of which they are aware than the solved one. This assertion with combination of the
creation of I guarantees the convergency of algorithm [10].

The described iterative peer-to-peer algorithm is also suitable for the application of any other
solution selection from the negotiation set than described maximal sum of utilities in criterion
6. For example there can be used classical monotonic concession protocol (MCP) [15] – simple
protocol for automated agent to agent negotiations in the cooperative domain. The use of such
protocol guarantees that both participating agents want to maximize their expected utility. In this
case both agents leave only Pareto optimal deals in the negotiation set S and then the agents can
use Zeuthen strategy [15] for finding the acceptable deal for both agents.

The theoretical study of the algorithm properties as well as its mathematical convergency
proof on selected worst case scenario is stated in the final report of the project extension [9].
Besides the convergency there is provided the set of the estimations giving limits of the algorithm
iterations for specified number of airplanes. The extension of the report also provides modification
of described basic IPPCA algorithm. It is extended with tendencies restrictions reducing the
number of iterations and thus reducing the necessary communication flow among airplanes and
makes final flight corridors more simple with lower number of segments. On the other hand as it
is shown in that report such advantages are compensated by slightly longer final trajectories.

The described IPPCA algorithm doesn’t allow any near miss (safety zone violation) during the
negotiation. If the density of the planes in the scenario is so high, it is not able to finish PNRC
negotiation and defining collision is simply skipped. This leads to occurrences of the uncontrolled
near misses. To be able to handle also such situations the algorithm has been extended with the
special behavior enabling near misses in these dense cases. The new feature of the IPPCA tries
to minimize possibility of the collision with minimization of allowed near misses. In other words,

70

January, 2008 FA8655-06-1-3073 Final Report

if it is not possible to solve the situation without any near miss, the algorithm gives solution with
minimal safety violation of minimum airplanes which is much safer than uncontrolled near misses.
For the detailed description of the extension please refer the final report of the project extension
[9].

14.6 Multi-Party Collision Avoidance

This section describes the collision avoidance algorithm based on the creation of groups of airplanes
which together solve a collision or collisions. The algorithm removes the iterations known from
the iterative peer-to-peer algorithm (described in the Section 14.5) appearing in the multi-collision
situations (see the Section 4.4). In a more dense airspace, this approach enables better utilization
of the airspace. As a motivation for this approach, we can imagine a situation where two airplanes
have a collision Ai ⊗Aj , but it is difficult for them to avoid the collision as other airplanes are in
the airspace near to them. The situation can be so difficult that they can have only two options,
dramatically deviate from their courses, or deviate only slightly but make their flight plans colliding
with another airplanes’ flight plans. However, they can create a group with the other airplanes
and solve the collision Ai ⊗ Aj together with them. Basically, we can say that the two colliding
airplanes will ask other airplanes to make space for their evasion maneuvers.

The basic idea behind the presented multiparty algorithm is to search the state space of possible
applications of sequences of evasion maneuvers on the flight plans of airplanes. The goal of the
search is to solve a multi-collision with respect to given criterion evaluating the fitness of the
solution. In our experiments we use the sum of flight plan utilities for decimalization of the social
welfare. There is no restriction how much evasion maneuvers an airplane can apply to its flight
plan. This means that the state space is infinite. The multiparty collision avoidance is motivated
by the A* algorithm [12]. The A* algorithm finds the optimal solution in a finite time if there
is a solution. Our situation is more difficult, each airplane has its local information about other
airplanes. This information can change during the search. This is the reason why we can not use
pure the A* algorithm, we can not specify searching space in the beginning of the search. When
the new plane appears in the communication range, its flight plan can collide with some airplane
in multiparty group. Then the A* algorithm should be restarted because of state space change.
Our algorithm just updates states in the open list and continues with the search. This approach
removes the loss of the progress of the search by restart. There are no cycles in the state space so
the list for storing of already expanded states can be omitted from the algorithm. We will use only
open list O for storing of states generated by the expansion of other states and not yet expanded.

For a given encounter 〈t, {fpi}Ai∈AC
〉 a multiparty group G ⊇ AC is a set of airplanes whose

flight plans are involved in a solution search process. The goal of the group is to find a solution
for the encounter. Note that solution provided by the multi-party algorithm has to contain flight
plans for airplanes AC , but usually it will contain additional flight plans for airplanes located
nearby. A state s is a set {si}Ai∈G , where si = 〈f̂pi,ui(fpi)〉 is a tuple containing the local
flight plan f̂p

s
of airplane Ai for state s and its utility value computed by airplane Ai from

the full flight plan fpsi . Cs is a set of all collisions among flight plans from s and gs is the
cost of application of evasion maneuvers. An initial state s0 contains current local flight plans
{f̂pi}Ai∈AC

(plans before applying any evasion maneuver), Cs0 = C where C is initial multi-
collision for the starting encounter and gs0 = 0. gs is recursively defined. For the given state s and

its child state s′ = {f̂p
s′

i }Ai∈I ∪ {f̂p
s

i}Ai∈G\I is the set of changed local flight plans by application
of evasion united with the set of their predecessors, then

g(s′) = g(s) +
∑
Ai∈I

ui(fpsi)−
∑
Ai∈I

ui(fps
′

i). (7)

71

January, 2008 FA8655-06-1-3073 Final Report

The set I ⊆ G holds exactly two airplanes which apply the evasions to remove selected collision
as described later. In other words, g(s′)− g(s) is the cost of the application of evasion maneuvers
with goal to remove one single collision of two flight plans. The final state sf is a state which is
the solution of an encounter, basically a set of non-colliding flight plans. For a given state s, the
evaluation function f(s) = g(s) + h(s) consists of the cost of the application of evasion maneuvers
g(s) and heuristic function h(s) which estimates how many more changes are needed to remove
all collisions from the flight plans in s.

At the beginning the multiparty group contains only the airplanes which create it: G = AC .
The searching algorithm of the group proceeds in a cycle until it finds the solution. The state with
the lowest value of the evaluation function is selected s∗ = arg min

s∈O
f(s). All flight plans from s∗ are

checked for collision with local flight plans of airplanes from the set A \ G. Any colliding airplane
not yet included in the set G is asked to join the group. If the airplane Ay joins the group, then
its actual local flight plan is added to all states in O and to state s∗. Precisely, any state s ∈ O is
replaced by a new state s ∪ 〈f̂py,uy(fpy)〉 (similarly for s∗). Note that the cost of the state g(s)
does not change by addition of the new flight plan, there is no application of evasion maneuvers. If
the state s is the final state, the algorithm finishes and the planes in the multiparty group change
their actual flight plans to the flight plans {fpsf

i }Ai∈G which correspond to local flight plans in the
chosen final state sf . From the description of the algorithm below, it is clear that each airplane
Ax knows for each generated local flight plan f̂p

sf

i its full version fp
sf

i .

In the other case - when s∗ is not the final state, the pair of airplanes Ai, Aj with the earliest
collision in the state s∗ is selected by

arg min
Ai,Aj∈G,Ai 6=Aj

t
fps∗

i ⊗fp
s∗
j

1 (8)

and these airplanes Ai, Aj generate combinations Sfp
s∗
i ⊗fp

s∗
j of flight plans to remove their

(earliest) collision. The airplanes prepare sets Fi resp. Fj of possible changed flight plans with
their utility value

Fi = {〈fp′i1,ui(fp′i1)〉, 〈fp′i2,ui(fp′i2)〉 . . .} (9)

and their local versions F̂i resp. F̂j for next δ interval, see the Section 14.1,

F̂i = {〈f̂p
′
i1,ui(fp

′
i1)〉, 〈f̂p

′
i2,ui(fp

′
i2)〉 . . .} . (10)

The flight plans 〈fp′i,ui(fp′i)〉 ∈ Fi are given by the application of all em ∈ EMi to the place
of collision fps

∗

i ⊗ fps
∗

j using the lowest parametrization p, see the Section 14.3. Note, that the
set EMi can contain different manoeuvres for each airplane and there is always included the leave
plan as it is manoeuvre em0 for all airplanes. Sfp

s∗
i ⊗fp

s∗
j is then a subset of combinations of flight

plans from F̂i and F̂j which have no collision or the first collision point of the collision is not earlier
that the old collision point, precisely

Sfp
s∗
i ⊗fp

s∗
j = {{〈f̂p

′
ik,ui(fp

′
ik)〉 ∈ F̂i,

〈f̂p
′
jl,uj(fp

′
jl)〉 ∈ F̂j} :

t
f̂p
′
ik⊗f̂p

′
jl

1 > t
f̂p

s∗

i ⊗f̂p
s∗

j

1 }

(11)

The set of new states N is created using

72

January, 2008 FA8655-06-1-3073 Final Report

N = {s′ = old ∪ new|
old = s∗ \ {s∗i , s∗j}, new ∈ Sfp

s∗
i ⊗fp

s∗
j ,

∀Ax ∈ {Ai, Aj} ∀Ay ∈ G \ {Ai, Aj} :

t
f̂p

new

x ⊗f̂pold

y

1 > t
f̂p

s∗

i ⊗f̂p
s∗

j

1 } .

(12)

New states N are added to O and the searching continues with expansion of the state with the
smallest value according to the evaluation function.

By default the algorithm uses the zero heuristics. With general utility function for the flight
plan, it is possible to have evasion maneuvers that do not change the utility of flight plane and
can be used for collision avoidance, so only zero heuristic is admissible [12]. For example assume
we have a scenario where two planes have a collision on their perpendicular flight plans and the
utility value depends only on the flight plan length. The best solution is when one plane speeds
up and another slows down and in this case the utility value is the same as in the initial state.

The algorithm with zero heuristics finds the final state with lowest value of evaluation function
which corresponds to the lowest utility loss for the sum of utilities of flight plans. However, in
the worst case the expanded state space can grow exponentially with the number of collisions in a
multiparty group. We can also use different not admissible heuristic. Such as ”collision” heuristic
which would combine the main utility criterion with giving more preferences to the states with less
collisions. The search process with such heuristics is faster, but its result can be far from the best
possible utility.

14.6.1 Interaction of Multi-party groups

When the airplane is asked to join the multiparty group G1, it can be already participating in
another multiparty group G2. In this case, the airplane checks if G1 is more important than G2

and if so, the airplane terminates its interaction with group G2 and joins the group G1. When
an airplane terminates the interaction with the group, the group is dissolved. The relation of
importance of groups is defined according to the earliest collision in their encounter. When the
group G is searching for solution of the encounter 〈t, {fpi}Ai∈AC

〉 then the time tG of the earliest
collision is:

tG = min
Ai,Aj∈G,Ai 6=Aj

t
Ai⊗Aj

1 (13)

The group G1 is more important than G2 – G1 � G2 if and only if tG1 < tG2 . To make � relation
total, it must be defined also for situations when tG1 = tG2 , also it is not important if tG1 < tG2
or tG1 > tG2 . It can be chosen for example randomly, or deterministically - with help of the
lexicographic ordering of the string representation of the groups.

73

January, 2008 FA8655-06-1-3073 Final Report

15 Non-cooperative Collision Avoidance

In the case when the communication between planes is not possible, it is required to solve the colli-
sions non-cooperatively. This can happen in the situation when e.g. the on-board communication
device of the plane is broken, the used collision avoidance systems are not compatible or the other
plane intentionally refuses to communicate (an enemy).

There are implemented two methods for handling such situations in the AGENTFLY. The first
is based on the non-cooperative object future position prediction with encapsulation to the dynamic
no-flight zone used for testing and flight plan replanning, described in the section 15.1. The second
non-cooperative method is based on the proportional navigation which provides optimal collision
avoidance between two UAAs, described in the Section 15.2.

15.1 NFZ-based Collision Avoidance

The dynamic no-flight zone-based non-cooperative collision avoidance has been designed and im-
plemented in the AGENTFLY system as one of the methods for collision solving. In the contrast
with other methods, the described solution is based on the path planning algorithm in order to
avoid dynamic no-flight zones, described in the section 6.1. These zones surrounding collisions with
non-cooperative objects are regularly updated. The non-cooperative objects are detected using an
airplane on-board radar sensing feature.

The algorithm is responsible for the coordination of all operations needed for avoiding potential
future collision of the airplane and an object in space the airplane cannot establish communication
with. The algorithm is implemented in the form of a special unit (a solver of the multi-layer
collision avoidance framework, described in the section 13) that can take part in the process of
collision solving within the pilot agent. The scheme of the NFZ-based non-cooperative solver is
shown in the Figure 49.

radar

object
on radar

new
collision point

collision selection deconfliction
framework

deconfliction
request

new
plan

object
recording

collision point
prediction

wrapping zone
recording

object
base

spatial
planning

time
planning

new plan
application

non-cooperative
solver

dynamic zones
no-flight zone

base static zones

Figure 49: NFZ-based non-cooperative avoidance solver scheme

The event that triggers the collision avoidance loop is the information obtained from the radar
describing the position of an unknown object in the area. This object is recorded in the base
of non-cooperative objects, unless it’s already present there. If the object is already known, its
position is updated.

74

January, 2008 FA8655-06-1-3073 Final Report

The next step is the prediction of the collision point (Section 15.1.1), an intersection of the
flight plan and the non-cooperative object. If no such virtual collision point is found, the loop
ends. In the opposite case, the collision point is wrapped by a dynamic no-flight zone and it is
passed on to the collision avoidance framework that will decide whether it is necessary to solve the
given collision. The solution process may not be executed in case that the collision has already
been detected and processed by another solver earlier.

If the collision avoidance framework decides that the collision should be solved, the last step
of the non-cooperative solver is executed, i.e. a new flight plan from the current position to the
destination point is generated using spatial and time planning. Spatial planning takes into account
all static no-flight zones as well as dynamic no-flight zones of all non-cooperating objects (Section
15.1.2). The new plan is then passed to the collision avoidance framework to be handled by the
pilot agent.

The described collision avoidance loop is executed for all objects found in the radar scan. This
is done periodically for each radar scan (cycle period tr).

15.1.1 Prediction of the Collision Point

In order to detect a potential future collision it is necessary to find a collision point c in the space
and time. It is a point defined by an intersection of the current flight plan and the flight trajectory
of the non-cooperative object. Since the future trajectory of the non-cooperative object in not
known exactly, it must be extrapolated from the object’s motion history. There are implemented
two future trajectory predictors: liner and predictor based on Taylor series.

The linear predictor estimates the future trajectory from the following two points: the current
position s and the position read from the previous radar scan sp. The current direction vector d
of the non-cooperative object is calculated simply as

d = s− sp. (14)

The current estimated speed v of the object is calculated as

v =
‖d‖
tr
, (15)

where tr is the radar cycle period.

The linear prediction is not well suitable for predicting future trajectory of the object which
quite often changes its direction (e.g. fly along turn element) because the prediction error is so high.
Besides linear prediction the AGENTFLY has integrated predictor based on Taylor series. Full
three dimensional predictor is realized as three independent Taylor series – one per each coordinate.
The following description shows how the prediction works for one coordinate. The position of the
monitored object can be viewed as a function of time. The function value in particular time t can
be counted from the Taylor series:

f̃(t) =
N∑
n=0

f(n)(t0)
n!

(t− t0)n (16)

75

January, 2008 FA8655-06-1-3073 Final Report

where f(n)(t0) denotes the n-th derivative of f at the time t0 and the zeroth derivative of f is defined
to be f itself. The N defines the number of the components in the Taylor series. If the N = ∞
then f(t) = f̃(t). For N < ∞ the error of prediction is 0 for the time t0 and rise with the higher
difference t− t0.

The AGENTFLY implementation of Taylor series works over the sequence of discrete position
samples with time stamps from the radar sensing. The derivative in the equation 16 is replaced
by the differences counted from that chain of last position samples. To count n-th difference n+ 1
last points are used. The computation of n-th differences are done in iterative way. The values for
the k-th iteration are:

∆(0)f(tk) = f(tk),
∆(1)f(tk) = f(tk)−f(tk−1)

tk−tk−1
,

∆(2)f(tk) = ∆(1)f(tk)−∆(1)f(tk−1)
tk−tk−1

,
...

∆(n)f(tk) = ∆(n−1)f(tk)−∆(n−1)f(tk−1)
tk−tk−1

(17)

where ∆(n)f(tk) denotes the n-th differences of f at the time tk. If the order of the predictor (and
the number of components in the Taylor series) is N = 1, then this predictor is the same as the
linear one.

The prediction of the future position from the limited number of the last observed positions of
the object based on the separate prediction of each coordinate component with finite prediction
order (finite number of last known points) provides prediction with object movement higher that
the maximum flight velocity. The function providing the predicted position contains this velocity
restrictions and if the plain Taylor series value is out of the bound, the function uses only the
shape of predicted trajectory and discards the velocity of the movement by its bounding.

In order to find the collision point, the flight plan and predicted trajectory are iterated in the
future time. In each iteration the distance between the predicted position and the position of the
airplane given by the current flight plan. If this distance is shorter than defined safety zone, the
collision point is found.

The size of the no-flight zone derived from the possible future flight trajectory (see the Section
15.1.2) of the non-cooperative object is stretched so that it is twice as long as the time from the
current position to the collision point.

15.1.2 Dynamic No-flight Zone Shapes

The linear predictor can be coupled either with the ellipsoid zone shape or with the shape given
by the future object position for given time interval, see the Figure 50. The shape of the dynamic
no-flight zones for non-cooperative object is derived from the possible future flight trajectory. The
trajectory takes into account the minimal turning radius rmin, maximal climbing and descending
angle ϕmax and the prediction time tp.

The second zone is internally represented as with the binary octant tree (described in the
Section 4.3). The advantage of octant trees is the efficient data storage and fast point and line
tests. Disadvantages include slow construction of octant trees and rough sampling of cells. For
the purposes of NFZ-based non-cooperative collision avoidance it is necessary to solve the problem
of fast translation, rotation and deformation of relatively small octant subtrees used as dynamic
no-flight zones of non-cooperative objects.

76

January, 2008 FA8655-06-1-3073 Final Report

Figure 50: Shape of the dynamic no-flight zone

Since complete rebuilding of an octant tree for each specific identified collision is too slow, a
different solution was designed. It is based on separation of all particular octant trees (for all
collision no-flight zones). The shape of the zone depends on the several configuration parameters
which are coupled with the type of the object. Thus, in the AGENTFLY there are defined such
zone for each known object type and the subsequent transformation is applied to the basic octant
tree. For such purposes the transformation node in the airspace representation is used (Section
4.3).

The predictor based on Taylor series is restricted to use only ellipsoid dynamic no-flight zone.
This restriction is given by the non-linear shape of the predicted trajectory from the current
position of the object to the collision position. Theoretically it is possible to construct such zone
also for non-linear trajectory, but it will be suitable only for that trajectory shape and cannot
be reused for other collisions. Due to the slow construction of that zone this solution cannot be
applied. The ellipsoid dynamic zone is constructed using basic geometrical object representation
(see the Section 4.3) and its center is inserted just to the place of the detected collision. The size
of the ellipsoid axis are then inferred from the velocities (both the airplane and object) in the
collision point and distance of the collision point from the current airplane position. The error of
the prediction rises along for later values. Thus the higher size of the ellipsoid partially compensate
this effect. For higher speed and further collision the ellipsoid is larger and vice-versa.

15.2 Optimal Proportional Navigation Algorithm

For purposes of experiments of non-cooperative collision avoidance (Section 17.2) it was necessary
to extend the AGENTFLY system with an implementation of a reference collision avoidance algo-
rithm. The Proportional Navigation-Based Optimal Collision Avoidance for UAAs [4] was chosen,
or in short Optimal Proportional Navigation.

The optimal proportional navigation algorithm tries to keep a predefined safe distance between
an airplane and an obstacle (non-cooperative one tracked on its on-board radar). This is achieved
by directing the airplane towards the edge of the safety zone and an appropriate acceleration. If
the airplane gets into such configuration with the obstacle in which no future collision exists, the
airplane control algorithm switches its mode from collision avoidance to navigation towards the
destination point. The algorithm pseudo-code is as follows:

77

January, 2008 FA8655-06-1-3073 Final Report

do while (airplane has not reached its destination)
calculate relative speed vrel = v − vT
if (relative speed vector is outside the obstacle cone)

switch mode to navigation towards destination
else

switch mode to deconfliction
end

end

obstacle
cone

X (airplane)

Figure 51: Scheme of the situation handled by the optimal proportional navigation

For purposes of collision avoidance, a vector
−−→
XB is defined. The vector points to the edge of the

safety zone (see Fig. 51). The relative speed vector is dragged towards the direction of this vector
in order to reach the airplane direction required for successful obstacle avoidance. Proportional
navigation control can be expressed as follows:

a = Nvrelθ̇, (18)

where a is acceleration, vrel is relative speed, θ is the angle of vector
−−→
XB and N is the propor-

tional navigation constant. The fore-mentioned formula corresponds to the classical proportional
navigation. Additional angle calculation follows:

θ̇ = φ̇+ γ̇, (19)

θ̇ = −

(
vrel sinψrel
RT cosφ

+
ṘT
RT

(tanφ+ tanγ)

)
. (20)

The calculation therefore depends on the fore-mentioned angles (see Fig. 51).

We define three sufficient conditions for switching to the navigation-to-destination mode:

1. distance between the airplane and the obstacle is greater than the safety zone (RT ≥ RP)

2. relative speed vector is outside the obstacle cone

3. the obstacle is located beyond the relative speed vector

78

January, 2008 FA8655-06-1-3073 Final Report

The last step is the calculation of the optimal proportional navigation constant N . It is based
on calculus of variations and the optimization theory. The result is a system of equations. By
solving this system we obtain the constant N :

µ =
vT cos(θf − ψT)

vrel
, (21)

N = 1− µ±
√

K

1−K
+ (1− µ)2, (22)

θf =
Nθ0 − ψrel
N − 1

, (23)

where K is the integration constant and θ0 and θf are the limit values. Moreover, the constant N
must fulfill the condition N > 1, which is based on analysis of convergence of the algorithm.

All proofs and additional information about the algorithm can be found in [4].

79

January, 2008 FA8655-06-1-3073 Final Report

16 Collective Flight

The collective flight functions in the AGENTFLY system provides capability for the automatic
synchronization of the group of independent airplanes. Each airplane flies along its given mission
until there is defined special way-point in its mission. The name of this way-point uniquely specifies
that the airplane should continue its flight through defined corridor. If the next way-point is such
one, the airplane enables the control modules providing the collective flight functions. The airplane
has got the configuration of airplanes that are in the same group. Using the knowledge about the
group airplane starts the negotiation with others and identifies how many of them have the intention
to use the same corridor. Then all such airplanes need to make the flight formation to fly via the
defined corridor. At the end of the corridor the airplanes break up the formation package and
each follows the next part of its mission specification. During the whole airplane mission there
can be specified several corridors to pass. The current AGENTFLY implementation allows only
straight corridors paths – the airplanes flying in the formation cannot make any turns until the
decomposition of the formation package.

The AGENTFLY system supports also more complicated situations where there are more de-
fined groups operating in the same area and have intention to fly through the same corridors –
corridors are uniquely given by their name id. For these situations each corridor has defined the
separation time interval and a set of alternative rendezvous points. The next group package can
enter the corridor after defined separation time. If it is not possible to fly via corridor when all
airplanes are ready they take holding orbit at one of the rendezvous point.

The described functionality is implemented in two connected modules. The first module does
the group synchronization (Section 16.1) and the second one provides the precise composition,
flight and decomposition of the formation package (Section 16.2).

16.1 Group Synchronization

The group module of the collective flight is responsible for the initial group synchronization before
the formation package setup phase. It provides inner group synchronization during which it iden-
tifies airplanes having the same intention to fly through the same corridor. First the airplanes go
to the selected rendezvous location. If at least one of the airplanes is delayed due to any reason,
others must wait for it applying holding orbit at the rendezvous point. During the holding phase
they still monitor if the missing airplanes will come. The missing airplane can reject the group
participation. E.g. it needs to perform the refuelling before the next part of the missing but the
tanker doesn’t come to the tank airspace. Thus, in such situation the airplane identifies that it
has fuel just for return back to the base and its rest part of the mission cannot be accomplished.
If all airplanes in the group are ready and others reject the group participation, the group module
invokes the formation module and starts the next phase of the forming formation package, see the
Section 16.2.

Besides inner group synchronization the module provides also outer group-to-group negotia-
tions. There is the predefined set of alternative rendezvous location for each corridor. If the group
of airplanes identifies that another group is occupying the same plane due to the use of the same
corridor, the group starts the negotiation with the other group and depending on their mutual
priorities (now given by the pre-planned corridor use time window) one of the group decides to
take other rendezvous location. The group with higher priority takes the location nearer to the
corridor entry point. Also if the group is already waiting in the holding orbits, the group is able
to move to the alternative location and perform waiting there. The group with the lower priority

80

January, 2008 FA8655-06-1-3073 Final Report

checks the time when the previous one enters the corridor and its own entrance is then planned at
least defined corridor separation duration later.

The implementation of the group module in the AGENTFLY utilizes the social dominance
concept and communication routing as it was developed in one of the previous AFRL project –
FA8655-02-M-4057 Inaccessibility in Multi-agent Systems [8]. There is not apriori selected leader
responsible for the group management and the leader is designated depending on the unique priority
of the airplane in the group using the dominance concept. This allows simply to handle the situation
when the current leader of the group has problems disqualifying it from the leader position – e.g.
it cannot communicate with others due to the transceiver error or it is damaged or lost. In such
case the other member of the group automatically becomes its leader. The communication among
airplanes has limited range and the synchronization communication in the group is not always
possible in one hop. This requires that the group is able to somehow reroute commands among
members from one location to the other.

The combination of two described concepts allows to handle very complicated cases. For ex-
ample the whole group cannot communicate although they are using routing. In that case the
group is split into several independent subsets which cannot communicate together. Then each
subset has own set leader which provides synchronization the group subset. The social dominance
concept automatically handles the situation when two subsets are merged – there exists the com-
munication path among their members. As well as the situation when one subset is split to more
subsets. The specification of the rendezvous location guarantees that all subsets become one group
at that position and then all airplanes act as one coherent group package.

16.1.1 Synchronization Messages Types

In the group module there are exist two groups of the synchronization messages:

• The group leader → the members – messages from the current group leader must reach all
group members. Such a message is realized as a multi-recipient message in the A-globe
platform. The leader selects as a recipients all members which are reachable directly by it.
The set of the reachable neighbors is provided by the directory services of the system. The
leader sends the message to them. The message itself holds two data structures used for
the routing: the set of already addressed members and the path back to the group leader.
If any of the members is aware of the existence and accessibility of not addressed members
it simply forwards the message to them. Before the rerouting the message it updates the
message routing structures. Using this mechanism the message reaches all members from
the mutually accessible group of the airplanes. And as the side effect of the multi-recipient
routing each of the members knows the actual communication path back to the group leader.

The communication messages of each type are also remembered by the member and if the
new member becomes accessible they are immediately forwarded to it.

• The member → the group leader – this kind of messages is simply sent along the known path
to the group leader. If the airplane to which the message should be send is not accessible
the airplane switches the message to the broadcast mode (similar to the routing in the first
group) to reach the group leader if it is present.

81

January, 2008 FA8655-06-1-3073 Final Report

16.1.2 Group Coordination Algorithm

Each member of the group knows if it acts as a group leader now. If it is not a group leader, it
monitors the communication from the leader to check the leader presence and the dominance of
the leader. If there is no message from leader for defined timeout period or the leader priority
is lower, the airplane automatically switches itself to the leader mode. On the other hand, if the
airplane is in the leader mode and it receives message from the other leader with higher priority,
it automatically switches its mode to the participant mode and accepts all commands from the
leader.

There are defined following control messages for the group synchronization:

• Keep alive – this message is periodically sent by the group leader to ensure that all members
are still aware about its existence. The second function of this message is that the members
update their communication path to the leader. The time interval for this message is coupled
with the monitoring timeout defined for the participant mode.

• Use rendezvous – once the airplane becomes the leader of the group it selects one of the
alternative rendezvous locations for the corridor and sends the selection to the participants.
Every time when the leader changes the selection it dispatches new choice using this message.
The period for the keep alive message is initialized again after this message because this one
provides the same function to the members. All airplanes receiving this command simply
change their target to the new rendezvous location and if they are already waiting in the
holding orbit in the other location they move to the new one and apply the holding orbit
there.

• Wait for you – this message is sent once by the group leader in the case that it has already
reached the rendezvous location. Thus every time when an airplane becomes the group leader,
it sends use rendezvous command and wait for you command if it is already ready for the
formation composition. The participant receiving this command starts periodical dispatch of
the group status information (ready too or wait for me) to the leader. The group leader keeps
the info about all group members states. If all members are ready, the leader invokes the
formation module to start formation composition phase (see the Section 16.2). Otherwise
the members are still waiting for others and wait in the holding orbits in the rendezvous
position.

• Wait for me – this message is sent from the member to the leader after receiving wait for
you command. This message is periodically sent to the leader until the airplane reaches the
rendezvous location. The leader thus monitors the existence and intention to still participate
in the package by the member. If the leader doesn’t receive wait for me or I am ready
message from the member in defined timeout interval it marks the airplane as not available
and doesn’t wait for it.

• I am ready – this message is sent by the group participant as opposite to the wait for me. It
provides information that the participant is ready for the formation composition phase.

• Formation done – the group leader informs all members that the formation module finishes its
formation setup negotiations. The message finalizes the group synchronization and no other
messages are sent in this phase. The formation done contains the final corridor entrance
time.

All described messages are sent mainly for the inner group synchronization among group air-
planes. But some of them are also used for outer group-to-group synchronization. The use ren-
dezvous is also sent to the identified airplane which doesn’t belong to my group. The airplane that

82

January, 2008 FA8655-06-1-3073 Final Report

received such message and participates in the other group (with different group name id) reroutes
this message to its group leader. The leader checks if the the priority of the own group is higher
or lower and then decides if own rendezvous location selection is updated. If not due to the higher
priority, the second group leader receives its selection too and thus the rendezvous change is its
responsibility.

Besides this rendezvous group-to-group selection the formation done message is exchanged
among the groups too. The group from the nearest rendezvous location enters the corridor first.
And the other groups wait until they receive the formation done message from that prioritized
group with corridor entrance time. The group with lower priority still waits in the holding orbit
and then the group leader tries to setup formation package for the received time shifted by the
corridor separation time interval.

16.2 Formation Composition And Decomposition

The formation module is responsible for the negotiation during the formation setup phase. It needs
to find the exact contact time for all autonomous airplanes and also to select the position in the
formation pattern respecting the defined constraints. In the formation flight all airplanes are very
close each other and thus the criterion for their separation used in the collision avoidance is not
satisfied. The avoidance module is disabled in this case and the responsibility for the collision-free
flight paths is on the formation module too. Besides this initial setup phase the module does the
flight in the formation package execution.

The formation flight, as it has been implemented so far, consists of four steps. The first step
is the flight from the current position to the location where the formation assemblage starts. The
second step is the formation assemblage, third step is the formation flight and finally the fourth
step is the formation split-up.

16.2.1 Formation slots assignment

When the UAAs which pass through the rendezvous point are ready for starting negotiation about
formation composition. If all members are there the current leader gives the request for the
formation assemblage to its Formation Manager module.This request consists of the formation
corridor start position, formation corridor end position, addresses of the formation members and
start time of the formation (time, when the formation is to be assembled in the start position).
Initially the time is given by the pre-planned package time. This time is later adjusted depending
on the current position of all members their constraints (airspace, flight model, etc.).

Formation members are divided into three categories according the type of the airplane in order
to set the specific formation slots to the formation members. These categories are escort coverage,
heavy and unspecified category. The members of the escort coverage category are placed on the
edge of the formation. The members of the heavy category are placed in the very back part of the
formation because of the turbulence they produce. The remaining slots are assigned to the other
types of airplanes. The restriction which type of airplane belongs to which category is specified in
the current manager configuration.

The algorithm first counts the number of the airplanes in each category. Then it needs to
determine which slots are going to be assigned to escort coverage category. It starts with the
position P0 (see the Figure 52) and then it assigns the positions on the edges - P1, P2, P3, P5 etc.

83

January, 2008 FA8655-06-1-3073 Final Report

Figure 52: Formation pattern

until the number of positions assigned to the escort coverage category is equal to the number of
airplanes in this category.

In the next step, the algorithm assigns the very last positions e.g. P11, P13 to the heavy group.
Which slots in the formation will be assigned depends on the total number of the airplanes in the
formation and on the size of escort coverage group and heavy group. In the very end, the slots for
the unspecified group are assigned. The rule is that if there are fewer members in the formation
than 16, the lower positions are always assigned.

Figure 53: Identification of the deviation angle for the initial assignment of the positions to all
airplanes.

After the assignment of the slots to the groups, slots are assigned to specific airplanes in
every group. During the slot assignment, the position of the airplane in the moment of the slot
assignment is crucial. The formation coordinator receives actual position from every airplane and

84

January, 2008 FA8655-06-1-3073 Final Report

then it computes the angle between the vector v and the direction of the formation corridor. Vector
v is determined by the actual position of the airplane and the formation corridor start position,
see the Figure 53.

The angle value is used for the slot assignment to the group members in order to minimize the
number of intersections of the flight plans when the airplanes are flying from their current position
to the formation corridor start position. The algorithm sorts the members of the group according
the angle value in ascending order. Then it starts assigning the most left formation slots to the
sorted airplanes until all positions for respective group are assigned. This is repeated for all three
groups, until all slots are assigned.

16.2.2 Flight Path Planning

When the positions are assigned, the formation manager loads from the configuration file the
prescribed paths for the flight of the planes to the formation (see the Figure 54). In the formation
assemblage procedure, the airplanes come very close one to another - the distances are much smaller
than the safety zone of the airplanes. Therefore it is necessary to turn off the collision avoidance
algorithm and ensure that the airplanes won’t collide. The collision avoidance for the part of the
flight from the assemblage start position (ASP) to the formation position (FP) is guaranteed by
the prescribed flight paths. These paths are prescribed from ASP to FP. Every position in the
formation has its’ own flight path. The paths are stored as the flight plans for the formation
decomposition and they are reversed using the internal AGENTFLY flight plan utilities. This is
the easiest way how to determine the ASPs for different position and orientation of the corridor.

Figure 54: Formation flight-in prescribed paths (for three planes).

As soon as ASPs are determined, the formation manager sends them to the airplanes together
with the prescribed flight plan that describes the path from ASP to the FP. The airplanes remove
the rest of their actual flight plans (e.g. application of holding orbit) and add the ASP way-point
to the end of their flight plan. Their planners plan the path from their current position to assigned
ASP point. Since the standard collision avoidance methods have been turned off, it is necessary
to ensure that the airplanes don’t collide on their way from the current positions to the ASPs.

85

January, 2008 FA8655-06-1-3073 Final Report

16.2.3 Collision Avoidance during Approach to ASP

The flight from the current airplane position (CP) to the FP consists of two parts. The first
part is the flight from the CP to the ASP, the second part is the flight from the ASP to the FP.
The second part is guaranteed by the prescribed flight plans, the remaining task is to ensure the
collision avoidance for the flight from the holding orbit to the ASP.

The airplanes send to the formation manager their flight plan, respectively the part of the flight
plan that represents the flight from the CP to the ASP. The formation manager performs checks
if any two flight plans collide using the similar detection process as in collision avoidance. If the
flight plans don’t collide, the acknowledge is sent to all formation members and the formation
assemblage is agreed and begins. If any two of the flight plans collide, the extra collision avoidance
algorithm first tries to change the flight plan for the first airplane. It changes its’ flight plan with
the flight plan of the aircraft from the same group that has the closest lower angle value. If this
change doesn’t help and there are still colliding plans, the flight plan of the first airplane is changed
with the second lower angle value and the collision is checked again. The algorithm works like this
until the changes of the flight plans between the first airplane and all members of its’ groups are
executed. If the solution is still not found, the same algorithm is executed on the second airplane.
When the solution is found, the airplanes start the formation assemblage execution.

16.2.4 Flight in Formation

When the formation is assembled, the airplanes fly in this formation on the same speed from the
formation corridor start position to the formation corridor end point. The same speed is guaranteed
by the prescribed flight plans - the airplanes fly to the formation on the very same speed and they
keep this speed the whole time they are in formation. Current implementation of the formation
management in the AGENTFLY supports only formation flight on the straight corridors and no
turns of whole formation package are enabled.

16.2.5 Formation Decomposition

When the airplanes reach the formation corridor end position, they follow the prescribed flight
plans for the formation decomposition. When the airplanes reach the endpoint of these prescribed
plans, the collision avoidance algorithm is turned on again and the airplanes continue in executing
their own missions using automatic avoidance mechanism.

86

January, 2008 FA8655-06-1-3073 Final Report

17 Experiments

This section summarizes the results of the experiments performed within the project in the
AGENTFLY system. First, the scalability tests comparing all implemented cooperative collision
avoidance methods are presented in the Section 17.1. The next Section 17.2 presents the compar-
ison of the non-cooperative collision avoidance based on dynamic no-flight zones and the optimal
proportional navigation algorithm in several testing configurations. The next set of experiments
validating the iterative peer-to-peer algorithm done in the project extension is described in the
final report of the project extension [9].

17.1 Cooperative Collision Avoidance

Three implemented cooperative collision avoidance methods were compared in pairs: rule-based
vs. iterative peer-to-peer algorithm (Section 17.1.1) and iterative peer-to-peer (IPPCA) vs. multi-
party algorithm (MPCA) (Section 17.1.2). Moreover the IPPCA and MPCA were visually evalu-
ated in the specific scenario setup (Section 17.1.3).

17.1.1 Rule-based vs. Iterative Peer-to-peer Collision Avoidance

The results of the comparison of the rule-based (RBCA) (Section 14.4) and iterative peer-to-
peer (IPPCA) (Section 14.5) methods are provided here. The IPPCA was limited to apply only
changing operators that do not change the altitude of the airplane. The experiments have been
carried out within the square area of 31 × 31 units. This simulation length unit is the same for
all experiments.

number of aircraft 5 – 85
each configuration repeated 50 times
testing square area size 31 units x 31 units
safety range radius of the airplane 0,25 unit
radar range radius of the airplane 10 units
speed of the airplane 0,075 unit·s−1 – 0,125 unit·s−1

aircraft acceleration/deceleration 0,05 unit·s−2

fastest flight across the square 248 seconds (max. speed on short way)
change point distance 2 seconds from current position
total number of experiments 1700
total number of simulated aircrafts 76490
total flight time 229 hours 44 minutes 34 seconds
total simulation time 54 hours 59 minutes 24 seconds

Table 1: The facts about scalability experiment comparing RBCA and IPPCA using the simulation
length unit unit; time is measured in the flight time

The Table 17.1.1 summarizes the facts about the experiments. The time in the table is measured
in the flight time. The sequence of 850 experiments has been measured for both methods of
cooperative collision avoidance. Configurations using 5, 10, 15 ... 85 simultaneous aircrafts flying
across the testing area were used. Each experiment was executed 50 times to provide average
result values. The size of the on-board radar range radius is 40 times larger than the size of the
airplane’s safety zone radius. The position of the change point during the negotiation is set to the
point which the plane will reach after 2 seconds of the flight time from that moment. Providing

87

January, 2008 FA8655-06-1-3073 Final Report

that the airplane flies at its maximal velocity and follows a straight flight path, the change point
is a point on the edge of the safety zone of this airplane.

Figure 55: Random generation of the planes for the scalability experiment benchmark

The airplanes were generated randomly in the experiment area as shown in the Figure 55.
The worst-case scenario was used. The plane was started randomly on one of the four sides of
the experiment area and with the intention to fly across the square to the randomly generated
destination point on the opposite square side. There was one restriction for the plane generation:
a new plane can be created only if its safety zone is free of any other airplanes. All planes’ start
and destination points were located on the same flight level. Due to the rule definition used in
RBCA (described in the Section 14.4) all aircrafts fly at the same flight level during the whole
experiment. Because of this, we omit climb up and descend down operators in IPPCA which leads
to flight on one flight level too.

According to the Table 17.1.1, 27010 airplanes were simulated within 1700 experiments, more
than 229 hours of flight time were simulated in less than 54 hours of real time.

The Figure 56 presents the comparison of the average number of the safety zone violations.
Method based on IPPCA has only a few safety zone violations. In the chart we can observe, that
average number is almost zero. On the other hand the RBCA is ”much more” worse. And its
number of violations is also growing with higher number of planes.

The next Figure 57 shows the average number of flight plan changes. The number of flight plan
changes in each experiment is equal to the number of collision avoidances executed by all airplanes
in the experiment. Therefore we can simply compute that each plane performs around 4 rule-based
and 1.07 pair negotiation about collision in the IPPCA in the configuration with 80 aircrafts.

88

January, 2008 FA8655-06-1-3073 Final Report

0

0,5

1

1,5

2

2,5

0 10 20 30 40 50 60 70 80 90

Planes

Vi
ol
at
io
ns

rule-based utility-based (same FL)

Figure 56: RBCA vs. IPPCA: Average number of safety zone violations

The next chart in the Figure 58 shows the average sum of differences between the final collision-
free (non-colliding) and the initial flight plan for all planes in the specific experiment configuration.
For the configuration with 80 planes in the experiment the average increment of the flight plan
length was 9 units for RBCA and almost 0 for IPPCA. It means that each plane had to increase
the length of its flight path by about 0,11 units in scenario with RBCA which represents less than
0.4 percent difference from the shortest (original) path. For the scenario with IPPCA it is even
less. In the Figure 59 you can see flight plans of planes in scenario with RBCA. The Figure 60
shows flight plans of planes in scenario with IPPCA. It is nice demonstration how it is possible that
there can be so big difference between the results from these two methods of collision avoidance.
The doted lines in screen shots represent original straight flight plans of UAAs. And solid lines
represents the final flight plans. You can see that in the scenario with RBCA are lines of current
flight plans much more curved.

Even if we omit operators turn down and turn up in IPPCA, the planes have one big advantage
with this method. They can slow down or speed up a little. With this advantage they can keep
almost straight flight plan, because they can solve collision by acceleration or deceleration giving
the best value for the utility function.

89

January, 2008 FA8655-06-1-3073 Final Report

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90
Planes

A
vg

. #
ch

an
ge

s

rule-based utility-based (same FL)

Figure 57: RBCA vs. IPPCA: Average number of changes in flight plans

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90
Planes

A
vg

. d
iff

 le
ng

th

rule-based utility-based (same FL)

Figure 58: RBCA vs. IPPCA: Average diff length of final flight plan vs. initial straight flight plan

90

January, 2008 FA8655-06-1-3073 Final Report

Figure 59: RBCA vs. IPPCA: Original flight plan (doted line) and final flight plan (solid line) in
scenario with rule-based deconfliction

Figure 60: RBCA vs. IPPCA: Original flight plan (doted line) and final flight plan (solid line) in
scenario with utility-based deconfliction

91

January, 2008 FA8655-06-1-3073 Final Report

The next chart 61 shows the performance of the designed AGENTFLY prototype. The ex-
periments were started in the fast simulation mode. In this mode the real-time visualization
components were disabled and the automatic adaptive simulation speed was used. The speed
of the simulation (the ratio between the simulated flight time and the real time) is dynamically
regulated depending on the overall system load.

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90

Planes

A
vg

. t
im

e
[s

]

flight time - rule-based simulation time - rule-based

flight time - utility-based (same FL) simulation time - utility-based (same FL)

Figure 61: RBCA vs. IPPCA: Comparison of the experiment flight time to simulation time

92

January, 2008 FA8655-06-1-3073 Final Report

The next chart 62 shows the average communication data flow among all airplanes. It cor-
responds to the sum of a size of all IP packets used during communications among UAAs. It is
interesting that even if the average number of flight plan changes is higher for RBCA, the average
data flow is almost the same in both cases. This nicely indicates a need of higher amount of data
for solving one collision in IPPCA.

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90

Planes

To
ta

l f
lo

w
 [M

B
]

rule-based utility-based (same FL)

Figure 62: RBCA vs. IPPCA: Average communication data flow among all UAAs

The next chart 62 contains a maximum data flow between any two UAAs in each second. The
data are from configuration with 70 planes. For each second there is one dot. This makes the dots
in some places really concentrated. It shows three main levels in the maximum data flow. And
we can see that a single plane has highest demands on the communication at the first half of the
simulation.

The next chart 62 shows minimal separation between UAAs in each second of simulation. The
red solid lines in the chart show the size of the safety zone around each UAA. The simulation is
for 70 planes. We can see that after a short time the minimal separation falls near the safety range
of planes.

93

January, 2008 FA8655-06-1-3073 Final Report

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600

Time [s]

M
ax

 fl
ow

 b
et

w
ee

n
tw

o
U

A
Vs

 [k
B

/s
]

utility-based rule-based

Figure 63: RBCA vs. IPPCA: The maximum data flow between any two UAAs in scenario with
70 planes

0

0,5

1

1,5

2

2,5

0 100 200 300 400 500 600

Time [s]

Se
pa

ra
tio

n

utility-based rule-based

Figure 64: RBCA vs. IPPCA: The minimal separation between UAAs in scenario with 70 planes

94

January, 2008 FA8655-06-1-3073 Final Report

17.1.2 Iterative Peer-to-peer vs. Multi-party Collision Avoidance

In the random experiment we performed a set of repetitive tests while collecting several characteris-
tic properties for the comparison of iterative peer-to-peer (IPPCA) (Section 14.5) and multi-party
collision avoidance (MPCA) (Section 14.6) methods. The sequence of 900 runs (configuration with
5, 10 ... 90 airplanes each 50 times repetitively) for each method was carried out in the limited
airspace area of 31 x 31 units. The mission Mi holds exactly two way-points randomly generated on
the two opposite airspace borders, thus each airplane needs to fly across the square. All way-points
have the same altitude during whole experiment and each new airplane’s way-points are generated
on the adjacent borders of the square in clock-wise direction. Such generating scheme guarantees
high number of collisions in the middle of the airspace. The safety zone size rsz = 0.25 units and
the communication range c = 10 units are the same for all airplanes. The airplane flying speed
can vary between 0.075 and 0.125 units per second. Totaly 85,500 airplanes were simulated during
more than 230 hours of flight time. The collision-free solution was found in every simulation run
– there is no collision between any two final airplanes’ flight plans.

The random generation is the same as in the comparison of RBCA and IPPCA (Figure 55). The
radius of each UAA’s safety zone is 0.25 units and its radar range radius is 10 units. The UAA’s
flight speed can vary between 0.075 and 0.125 units per second with acceleration and decelaration
of 0.05 speed units per second. Totaly 85500 UAAs were simulated during more than 230 hours of
the flight time. A collision-free solution was found in each run – all UAAs respect the safety area
around all others during the simulation.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

#UAVs

S
um

 O
f L

en
gt

h
C

ha
ng

es
 In

 F
P

s

MPCA
IPPCA

Figure 65: IPPCA vs. MPCA: The sum of differences between final collision-free paths and shortest
regardless collisions.

The top plot in the Figure 65 presents the comparison of the average sum of all differences
between the final collision-free flight plans and the shortest path from start to end way-points
(euclidian distance) in given run. The results validate benefits of the MPCA algorithm to provide
a more optimal solution – depending on the number of UAAs, the results are improved by 10 to
50 percents compared to the IPPCA. The value varies due to the fact that the same numbers and
types of collisions during each randomized experiment are not guaranteed.

The chart in the Figure 66 displays the average sum of numbers of changes applied by all
UAAs in the given experiment run. More changes occur in the IPPCA due to its iterative nature
of solving multi-collisions – the multi-collision is a collision of more than two UAAs at the same
place and time. The difference in the number of applied changes in a flight plan correlates with
the difference depicted in the previous plot. There are situations where multi-party coordination
group has more than two UAAs that participate in searching a solution.

95

January, 2008 FA8655-06-1-3073 Final Report

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

#UAVs

#F
P

 C
ha

ng
es

 D
ue

 T
o

C
ol

lis
io

ns

MPCA
IPPCA

Figure 66: IPPCA vs. MPCA: The number of applied changes by all planes in particular experi-
ment run.

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

#UAVs

T
ot

al
 F

lo
w

 [M
B

]

MPCA
IPPCA

Figure 67: IPPCA vs. MPCA: The communication flow analysis: total communication flow

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

#UAVs

M
ax

 C
om

m
un

ic
at

io
n

B
an

dw
id

th
 [k

B
/s

]

MPCA
IPPCA

Figure 68: IPPCA vs. MPCA: The communication flow analysis: maximum network bandwidth
(middle)

We’ve studied communication aspects of both algorithms, see Figure 67, 68 and 69. Both
algorithms have almost the same amount of transmitted bytes, but the difference is in the flow
distribution during the experiment run. The middle chart presents the maximum communication

96

January, 2008 FA8655-06-1-3073 Final Report

bandwidth depending on the number of UAAs in the experiment run. Again the chart presents
the average value derived from 50 repeated tests. We observed that the MPCA requires several
times wider communication bandwidth than IPPCA, especially for the runs with more UAAs. The
bottom plot shows the communication flow over the time. The MPCA requires more communi-
cation during the state expansion phase within the coordination group but on the other hand it
requires smaller number of coordination groups due to the fact that MPCA solves multi-collision
in one change. This leads to almost the same sum of total bytes transmitted among all UAAs in
the run.

0 50 100 150 200 250 300 350 400 450 500
10

−1

10
0

10
1

10
2

10
3

Time (s)

kB
/s

MPCA
IPPCA

Figure 69: IPPCA vs. MPCA: The communication flow analysis: network flow distribution in
time in one specific run for 90 UAAs (bottom).

We’ve also analyzed the computation requirements of both algorithms for the entire runs. The
computation requirements is measured as a sum of time necessary to solve all collisions in the
run. Both experiments have been carried out on the same identical computer. We found that the
requirements are also almost the same for both algorithms, but the distribution of computation
power is similar to the distribution difference in the network flow.

17.1.3 Iterative peer-to-peer and Multi-party Method in Specific Scenarios

The difference between IPPCA and MPCA algorithms have been tested on two selected worse-case
based scenario setups. In the first setup there are flying 13 airplanes located in the geometrical
vertically oriented plane. Their position in the plane is shown in the Figure 70 left. Initially all
of them fly in the same direction and at the same flight speed. There is another airplane which
is flies in the opposite direction and has a head collision with the airplane located in the middle
of the first group. The final results comparing both collision avoidance methods are depicted on
the right side in the Figure 70. When using the iterative peer-to-peer algorithm only one plane
avoids the group of airplanes and therefore no other planes participate in the solution. On the
other hand, while using the multi-party method the middle airplane in the group performs a
combination of several flight plan changing manoeuvres and creates a small hole in the middle of
the group flying in geometrical plane to let the opposite airplane fly through. Then the airplane
goes back to its original central position within the group. The difference is given by the fact that
the multi-party solution is found by the search for the solution with best criterion through the
large space of possible combinations. In iterative peer-to-peer version two negotiating airplanes
must find solution of their collision and next negotiation cannot take already applied changes back.
The multi-party method provides a solution that is only 0.213 units longer than the initial flight
plan while the iterative peer-to-peer gives a solution that is 2.843 units longer. These values were

97

January, 2008 FA8655-06-1-3073 Final Report

calculated as an average from 20 consecutive experiments.

Figure 70: Left: the setup of the first test scenario. Right: the result after iterative peer-to-peer
(top) and multi-party (bottom) negotiations.

The second selected worse-case based scenario setup places ten airplanes equally to the hori-
zontal circle. All of them start at the same flight altitude and want to fly to the opposite side of
the circle through its center. Therefore in the center of the circle there is a multi-collision of all
airplanes where each one has collision with all others. Both algorithms find a solution for the setup
– final flight plans are not colliding together. The iterative peer-to-peer algorithm produces final
flight plans 1.963 units longer then the initial ones and the multi-party method provides solution
only 1.441 units longer.

98

January, 2008 FA8655-06-1-3073 Final Report

17.2 Non-cooperative Collision Avoidance

The functionality of the implemented algorithms of the non-cooperative collision avoidance (see 15)
was verified using two sets of experiments. In the Section 17.2.1 there are experiments comparing
the no-flight-zones-based non-cooperative collision avoidance (NFZCA) (described in the section
15.1) with the optimal proportional navigation (described in the Section 15.2). Additional scenario
where proportional navigation fails is presented in the section 17.2.2. The Section 17.2.3 presents
tests with complex scenarios using the NFZ-based non-cooperative collision avoidance only.

17.2.1 Comparison of No-flight-zones-based Non-Cooperative Deconfliction and Pro-
portional Navigation

Comparison scenarios are based on the situations described directly in [4]. There are three of them,
each contains one controlled airplane and one uncontrolled. The uncontrolled airplane (called an
obstacle) always flies directly from the starting point to the destination point. The controlled
airplane is always heading north and it must avoid the collision in the middle of the operation
area.

As the scenarios are supposed to be planar, it was necessary to disable changes of altitude
in case of non-cooperative collision avoidance. This was simply achieved by removing the spatial
search manoeuvres for climbing and descending from the flight path planning algorithm (see the
Section 6.1).

Table 2 shows the comparison of lengths of average trajectories (10 measurements) using pro-
portional navigation and NFZ-based non-cooperative collision avoidance.

average trajectory length l[u]
proportional NFZ-based no control
navigation non-cooperative CA

perpendicular collision 33,21 33,85 30,0
slant collision 31,17 31,52 30,0
head-up collision 30,81 30,62 30,0

Table 2: Comparison of lengths of average trajectories using the proportional navigation and
NFZ-based non-cooperative CA

I. Perpendicular Collision Scenario

The first comparison scenario involves the perpendicular collision. The resulting flight trajec-
tories can be seen in the Figure 71. The left trajectory is the result of the proportional navigation
and the right one is the result of NFZCA. The left trajectory is smoother, because the proportional
navigation uses calculation of acceleration vector a in each step of the simulation. The red color
corresponds to the avoidance manoeuvres and the green color marks the flight towards the des-
tination point. In the right trajectory we can see search manoeuvres of manoeuvre-based spatial
planning (see 6.1) used by NFZCA.

The length of the safety zone towards an uncontrolled airplane is depicted in Figure 72 using
a line of the given length pointing towards the uncontrolled airplane.

The predicted no-flight zone of a non-cooperative object during a simulation run can be seen
in Figure 73. In this case the zone is not deformed in any way as the figure captured the particular
moment when replanning occurred and in such a case the zone is normalized to the unit length.

99

January, 2008 FA8655-06-1-3073 Final Report

Figure 71: Results of the perpendicular collision scenario

Chart 74 shows relation between the distance of a controlled and uncontrolled airplane and
time. In contrast to NFZCA, the proportional navigation plans the trajectory so that it touches
the edge of the safety zone. NFZCA leaves greater distance between the trajectory and the object,
because a dynamic no-flight zone also considers the possible change of direction of the object.

II. Slant Collision Scenario

In the scenario of slant collision (Figure 75) we can see the deviation from the nominal trajectory
occurred later and is less prominent than in the previous case.

Similarly to the previous case, the chart 76 shows a comparison of distances between controlled
and uncontrolled airplane for both algorithms.

III. Head-up Collision Scenario

The last comparison scenario (Figure 77) is specific for its singular configuration of starting
and destination points. In the case of proportional navigation the problem is solved by directing
the airplane so that it follows the tangent of the safety zone circle and the airplane (vector

−−→
XA).

In case of NFZCA the solution depends on the ordering of turning manoeuvres. In this particular
case the first one is a left turn.

In this scenario the safety zone is clearly breached (see diagram 78). In case of the proportional
navigation the problem is caused by restriction of the maximal acceleration of the airplane, while
in case of NFZCA it is caused by the deformation of the dynamic no-flight zone.

17.2.2 Additional Scenario of Proportional Navigation Failure

An additional comparison scenario is a demonstration of restriction and failure of proportional
navigation (Figure 79). This simple scenario contains two uncontrolled airplanes configured in
such a way that once the algorithm switches to the proportional collision avoidance mode towards
the other airplane (Obstacle00004) the conditions for flight-to-destination mode are fulfilled which
causes the actual avoidance to be switched off and the airplanes collide.

NFZCA works correctly in this situation, because the planning algorithm considers all current
non-flight zones (Figure 80).

100

January, 2008 FA8655-06-1-3073 Final Report

Figure 72: The length of the safety zone during the simulation run (proportional navigation)

The given situation can be compared also in the diagram of the distance of controlled and
uncontrolled airplane 81. Proportional navigation algorithm no longer tries to avoid the other
object after the first overshoot (at 10 sec).

17.2.3 Complex Scenarios of Non-Cooperative Collision Avoidance

The section presents a set of experiments with scenarios designed specifically for NFZCA. As we
see in the scenario of proportional navigation failure (see 17.2.2), no more than two airplanes are
sufficient to prove that in case of a suitable configuration, airplanes controlled by a proportional
navigation algorithm will crash. Since the following scenarios contains more than two controlled
airplanes, the algorithms are incomparable.

In this set it is also necessary that the non-cooperative collision avoidance involves also the
altitude changes, because the solution can usually not be found using the planar collision avoidance
only.

Table 3 shows comparison of lengths of average trajectories (20 measurements) in three complex
non-cooperative collision avoidance scenarios.

length of trajectory l[u]
average minimum maximum no control

two airplanes collision 31,58 30,28 37,16 30,0
four airplanes collision 32,29 30,15 42,61 30,0
ten airplanes collision 36,89 30,10 65,49 30,0

Table 3: Comparison of lengths of trajectories in NFZCA scenarios

101

January, 2008 FA8655-06-1-3073 Final Report

Figure 73: Predicted no-flight zone during the simulation run (NFZ-based non-cooperative decon-
fliction)

I. Two Airplanes Collision Scenario

The first scenario is a straight head-up flight of two airplanes controlled by NFZCA. Both
airplanes predict a dynamic no-flight zone of the other airplane and plan a path around it. In
Figure 82 we can see one no-flight zone predicted by airplane Plane00001.

In Figure 83 we can see three different solutions of the given scenario. The non-deterministic
nature of the non-cooperative collision avoidance algorithm is caused by the implementation of the
pilot agents running in separate threads in the operating system.

Execution and switching between these threads depends on a number of factors that cannot
be controlled by the AGENTFLY system (e.g. other running programs, load and number of
processors etc.) Threads switching influences ordering of execution of planning algorithms and
thus the resulting trajectories as well.

The first trajectory is a result of a planning process that occurs after a no-flight zone is predicted
for the first time, i.e. both airplanes turn left. The second trajectory is a result of repetitive
execution of the replanning process that is active until it is more beneficial for one of the airplanes
to change altitude temporarily and thus avoid the collision (shorter resulting trajectory). The
last trajectory is a result of cyclic changes of trajectory applied by both airplanes symmetrically
(the problem of singular situation). This problem is solved by a multiplicative constant from the
interval 〈1; 1, 5〉 generated randomly for each airplane in the system. This constant is used for
scaling all predicted zones of the given airplane. This way the probability of collision during the
cyclic path changes is remarkably reduced, because the generated paths are different for differently
scaled zones.

II. Four Airplanes Collision Scenario

102

January, 2008 FA8655-06-1-3073 Final Report

non-cooperative deconfliction
proportional navigation

edge of safety zone

D
is

ta
nc

e
fr

om
 o

bs
ta

cl
e,

 l
[u

]

Time, t [s]

Figure 74: Graph of the distance of the controlled and uncontrolled airplane in the perpendicular
collision scenario

By extending the previous scenario with two airplanes flying in the perpendicular directions
we get a scenario with four airplanes. In Figure 84 we can see the use of altitude change by the
non-cooperative algorithm and on the left-hand side there is a spiral manoeuvre for an ”abrupt”
change of altitude.

In the Figure 85 we can see the execution of the scenario with two currently predicted zones
and two results of the scenario. In most cases one or two airplanes change their altitude during
the very first planning process, because the no-flight zones of the perpendicularly flying airplanes
form a barrier that cannot be avoided by turning manoeuvres only. As soon as these airplanes
start climbing, the collision predictor of the other pair no longer takes the two climbing airplanes
into consideration and the collision is solved the very same way as in the previous scenario, two
separate instances in two different flight levels.

Figure 75: Results of the slant collision scenario

103

January, 2008 FA8655-06-1-3073 Final Report

non-cooperative deconfliction
proportional navigation

edge of safety zone

D
is

ta
nc

e
fr

om
 o

bs
ta

cl
e,

 l
[u

]

Time, t [s]

Figure 76: Diagram of distance of controlled and uncontrolled airplane in slant collision scenario

III. Ten Airplanes Collision Scenario

An extreme testing scenario is the collision of ten airplanes with one theoretical collision point
in the middle of the operation area. Similarly to the previous scenario the result of the planning
process is demonstrated in both 3D (Figure 86) and 2D (Figure 87).

Using such scenario in the non-cooperative collision avoidance setup is unfitting considering the
requirements it poses on the collision avoidance algorithm. Nevertheless, in approximately 85% of
simulation runs no collision occurs.

It is important to point out that the simulated situation is highly unlikely to happen in real-
world cases, moreover the space for manoeuvres is very restricted, only the basic linear collision
predictor is used, turn radius is relatively big, considering the size of the operation area and the

Figure 77: Results of the head-up collision scenario

104

January, 2008 FA8655-06-1-3073 Final Report

non-cooperative deconfliction
proportional navigation

edge of safety zone

D
is

ta
nc

e
fr

om
 o

bs
ta

cl
e,

 l
[u

]

Time, t [s]

Figure 78: Diagram of distance of controlled and uncontrolled airplane in the head-up collision
scenario

given situation and the entire simulation runs on a single processor. Under these circumstances,
the success rate of 85% is a very good result.

105

January, 2008 FA8655-06-1-3073 Final Report

Figure 79: Results of the proportional navigation failure scenario

Figure 80: Results of the proportional navigation failure scenario handled by the NFZCA

106

January, 2008 FA8655-06-1-3073 Final Report

non-cooperative deconfliction
proportional navigation

edge of safety zone

D
is

ta
nc

e
fr

om
 o

bs
ta

cl
e,

 l
[u

]

Time, t [s]

Figure 81: Diagram of distance of controlled and uncontrolled airplane in the proportional navi-
gation failure scenario

Figure 82: Two airplanes collision scenario

107

January, 2008 FA8655-06-1-3073 Final Report

Figure 83: Results of the two airplanes collision scenario

Figure 84: Horizontal view of the result of four airplanes collision scenario

108

January, 2008 FA8655-06-1-3073 Final Report

Figure 85: Course and results of four airplanes collision scenario

Figure 86: 3D view of the result of ten airplanes collision scenario

109

January, 2008 FA8655-06-1-3073 Final Report

Figure 87: Course and results of ten airplanes collision scenario

110

January, 2008 FA8655-06-1-3073 Final Report

18 UAA Operation over LA in Real Civil Air-Traffic

The multi-layer collision avoidance architecture (Section 13) has been validated in the environment
where operate real air-traffic over Los Angeles International Airport. In the scenario there are
inserted two types of planes. There randomly operate agent controlled UAAs. The UAAs are
configured to use the iterative peer-to-peer collision avoidance (Section 14.5) with other UAAs
controlled by agents and if there is other flying object they will use the no-flight zones based
non-cooperative collision avoidance method (Section 15.1).

The simulated air-traffic is extended by the real air-traffic data obtained from publicly available
internet sources, as described in the section 8. These airplanes are detected by on-board radars of
the simulated airplanes in the NFZ-based non-cooperative solver and thus the collision avoidance
loop (collision prediction, dynamic no-flight zones and planning) is triggered. In Figure 88 we can
see in both 3D and 2D view of the planned trajectory going above the dynamic no-flight zone
predicted for the real airplane.

Figure 88: Operation of agent-controlled UAAs over LA with imported real air-traffic

111

January, 2008 FA8655-06-1-3073 Final Report

19 Complex Combat Scenario

The scenario presented in this section utilizes all features provided by AGENTFLY system in
the one complex scenario. All technology is combined together to provide the desired function in
synergy. All airplanes in the scenario are controlled by the agents. Multi-agent system utilizes its
flight path planning (Section 6) and simulation (Section 5) capabilities in the real-time simulation
mode (see the Section 3). The airplanes which are normally driven by a human pilots use the
multi-layer collision avoidance framework (Section 13) to avoid collisions during the mission. They
use the cooperative collision avoidance algorithms (Section 14) to avoid collision among airplanes
from their group but at the same time they need to avoid Global Hawks providing monitoring
using the non-cooperative avoidance (Section 15). The Global Hawks are configured to not to use
any collision avoidance module, they are fulfilling pre-configured mission objectives. The airplanes
are divided into two packages A and B. They need to accomplish their mission targets and need
to be coordinated together to fly in a formation package via specified corridors. This functionality
is provided by the collective flight feature of the AGENTFLY system described in the Section 16.
The situation of the coordination is made more difficulty by the need of pre-action and post-action
refueling where occurs delays in the particular mission execution.

Figure 89: The map of the complex combat scenario.

The Figure 89 shows the map of the combat scenario. On the left hand side of the figure, there
is the safe zone. There are four base airports and another three base airports are located in the
bottom of the figure. These are the departure basis where the airplanes start from and where
they land. The Airport F represents a carrier on the ocean. On the right hand side, there is the
adversary zone. The battle line is depicted in red dashed line. Both packages are supposed to use
the ingress corridor to get to the target zone (the corridor in the middle of the picture) and to use
the egress corridor to leave the enemy zone. The grey zones on the map represent the zones where
the air defense threat is present - they are the no flight zones in our representation. Two ochre
zones in the right hand top corner represent the zones where the Desired Mean Points of Impacts
(DMPI) are located. DMPIs are represented by small icons of tanks and helicopters in the map.
The scenario simulate more than hour of the mission.

In the very beginning of the scenario at time 2 minutes after the start, the strike mission
consisting of four F16C s departures from the Airport G and it aims to the Rendezvous point for
ingress corridor. During the flight, the tanking of the fuel is scheduled. The tanker is late by 5

112

January, 2008 FA8655-06-1-3073 Final Report

Figure 90: Pre-action refueling situation in the scenario.

minutes, therefore the mission must wait for the tanker. In the Figure 90, you can see the holding
of the mission. The tanking process hasn’t been implemented in detail in the AGENTFLY. The
refueling process is represented only symbolically in the scenario and no refueling approach is
realized in the scenario. When the KC135R comes, the mission follows KC135R closely. This
represents the tanking process which causes the delay of the strike mission.

Figure 91: Members of the package A are flying to the rendezvous point 1 of ingress corridor and
the mission of four F16C s (blue ones) is delayed.

Around the time 9 minutes from start, the first B52H single-ship mission starts from the
Airport D. The second single-ship mission starts at time 10 minutes and both missions aim to the
Rendezvous 1 for Ingress corridor, as they are going to be the members of the package A. Around

113

January, 2008 FA8655-06-1-3073 Final Report

the time 12 minutes, the F15E mission composed of 4 aircrafts starts from the Airport A and
aims to the Rendezvous 1 of Ingress corridor too. At the time 13 minutes after the start, the
FA18C mission composed of 2 aircrafts starts from the carrier (Airport F) and aims to the same
rendezvous point. Then another mission composed of four F15E aircrafts starts from the Airport
A. Nine Global Hawks start just after the F15E s from the Airport A. They fly to the battle zone
in order to monitor the situation. The situation around the time 15 minutes is in the Figure 91.
During this phase the airplanes from the package A utilizes the automatic collision avoidance and
performs initial inner group synchronization and monitoring.

Figure 92: Package A members are waiting in the holding orbits, package B members are flying
to the alternative rendezvous point 2.

Around the time 19 minutes after the start, 4 missions of total 5 are at the Rendezvous 1 for
Ingress corridor. Using the group coordination they identified that the fifth mission is delayed
because of the delayed tanker. Thus they are waiting in holding orbits for the last mission. During
the waiting they are still doing monitoring of the fifth mission. If there is detected an issue with
that mission (not enough fuel, other problems) they will decide to fulfill mission without last
mission or cancel whole package plans.

At the time 20 minutes, the missions for the package B are taking off. The single aircraft mission
B52H starts from the Airport B. First, the second package tries to go to the same rendezvous
location as the first package. But when at least one mission of that package is closer (2 minutes
later) to that point they detects that the desired contact point is already occupied by the another
package. In such situation the second package decides to select alternative rendezvous point for
the Ingress corridor. They select alternative area due to the fact that their priority (or order
in the plan) is lower than the previous package. All members of package B will go the selected
Rendezvous 2.

Later the mission composed of four F15E s starts from the Airport B and flies to the Rendezvous
2 for ingress. So does the mission of two F18C, that starts from the Airport F. The described
situation is depicted in the Figure 92. The members of the package A are waiting for the delayed
mission at the Rendezvous 1. The delayed mission has just finished the refueling and flies to the
approaching point. Meanwhile the second package B flies to the alternative rendezvous point 2.

114

January, 2008 FA8655-06-1-3073 Final Report

Figure 93: Detail of the formation approach flight plans of the package A.

Around the time 29 minutes after the start the last mission of the package A finally comes to
the rendezvous point and the formation is being formed. They negotiate about the selection of the
position in the formation pattern and finds composition flight plans which are collision free. The
final flight plans for the compilation formation members in to one package are shown in the Figure
93.

Figure 94: Package A is in the Ingress corridor and the package B just finalized negotiation about
formation setup.

115

January, 2008 FA8655-06-1-3073 Final Report

Around the time 39 minutes, the package B starts the assemblage of the formation. The package
A is still in the ingress corridor to the battle zone, see the Figure 94.

Figure 95: Break up of the package A.

Figure 96: Package A members in the holding orbits waiting for all members to come to the
rendezvous point of the egress corridor.

At the time 43 minutes, the formation of the package A breaks up and the individual airplanes
fly to their DMPIs, see Figure 95. DMPIs of the package A are in the south part of the battle
zone, under the grey no-flight zone. The airplane fly over all DMPIs on their lists and then they
fly to the egress corridor, where is the rendezvous point. Meanwhile the Global Hawks monitor the

116

January, 2008 FA8655-06-1-3073 Final Report

situation around and the package members must avoid them using the non-cooperative collision
avoidance.

When package A members fulfill their DMPIs, the package B members are flying through the
ingress corridor to the battle zone.

A soon as all airplanes accomplish their objectives, they fly to the rendezvous point of Egress
corridor, see Figure 96. Two F18C are patrolling in the holding orbits near the egress corridor to
ensure the safety for other package members. In the same time, the package B is approaching the
battle zone.

Figure 97: Post-action tanking of the two missions of F15E s after the egress from the corridor.

After the egress formation assemblage, the package A leaves the battle zone using the egress
corridor and the package B breaks up. The members of the package B fly to the north zone to
their DMPIs. Around the time 65 minutes, the package A breaks up, because it has flown through
the egress corridor over the battle line. The aircrafts form the same missions like before the ingress
to the battle zone and they fly to their home bases. Both missions of F15E, each composed of 4
airplanes, are out of fuel. They have to meet the KC135R before their flight to their base. The
tanking is again simulated by the flight behind the KC135R, see the Figure 97.

At the time 67 minutes, the package B assembles the formation and enters the egress corridor.
At the time 80 minutes, the package B crosses the battle line and it breaks up. The missions are
formed in the same way as before the ingress and the airplanes fly back home. In the same time,
the Global Hawks fly back as well. The situation is depicted in the Figure 98. The two F15E
missions are still holding a loop for the tanking.

117

January, 2008 FA8655-06-1-3073 Final Report

Figure 98: The break up of the package B and flight to the home bases.

118

January, 2008 FA8655-06-1-3073 Final Report

20 AGENTFLY Prototype Requirements

This section provides optimal requirements for running the basic demonstration scenarios of de-
signed AGENTFLY prototype for all its components.

System Requirements: Multi-agent AGENTFLY Core System

One or more host computers with the following requirements are required to run the AGENTFLY
Core. Use of several computers allows higher number of collision-free airways to be planned because
planning is handled in a distributed manner based on plane-to-plane negotiation.

• JAVA supported operating system with 1GB RAM at least, CPU 1GHz+ (depends on the
number of simulated UAAs),

• Java Runtime Environment 1.6 or higher (version for Windows 32bit is pre-installed on the
distribution disk),

• network connection between all computers running Agents Core System (not necessary if the
whole system is running on the one host) without any firewall restrictions.

System Requirements: Remote WEB Client

• standard PC with network connection to the AGENTFLY Core host (intranet/internet),

• Windows 32bit, Linux, Mac OS X, Sun OS (sparc or x86), 512 MB RAM at least,

• graphics drivers with OpenGL support,

• pre-installed Java Web Start (Java Runtime Environment 1.6 or higher is optional because
it can be downloaded and installed by Java Web Start automatically),

• any internet browser associating the Java Web Start application with JNLP extension.

System Requirements: Operator Agent

Operator Agent can be started on the same computer as the Multi-agent AGENTFLY Core system
part or on the other computer.

• Windows 32bit operating system, CPU 1GHz+, RAM 512MB+,

• graphic card with hardware 2D/3D acceleration supported in the drivers,

• minimal screen resolution 1024x768 pixels,

• Java Runtime Environment 1.6 or higher (version for Windows 32bit is pre-installed on the
distribution disk),

• LAN network connection to the Core System host (only necessary when operator agent is
running on different host).

119

January, 2008 FA8655-06-1-3073 Final Report

References

[1] A-globe. A-globe Agent Platform. http://agents.felk.cvut.cz/aglobe, 2006.

[2] DOD. Unmanned aircraft systems roadmap 2005-2030, 2005.

[3] S. Frisken and R. Perry. Simple and efficient traversal methods for quadtrees and octrees.
Journal of Graphics Tools, 7(3), 2002.

[4] Su-Cheol Han and Hyochong Bang. Proportional navigation-based optimal collision avoidance
for uavs. In S. C. Mukhopadhyay and G. Sen Gupta, editors, Second International Conference
on Autonomous Robots and Agents, pages 76–81. Massey University, New Zealand, 2004.

[5] JOGL. Java Bindings for OpenGL. http://jogl.dev.java.net, 2005.

[6] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology: the journal of
the International Association for Cryptologic Research, 4(2):151–158, 1991.

[7] Simon Parsons and Michael Wooldridge. Game theory and decision theory in multi-agent
systems. Autonomous Agents and Multi-Agent Systems, 5(3):243–254, 2002.

[8] M. Pěchouček, V. Mař́ık, D. Šǐslák, M. Rehák, J. Lažanský, and J. Tožička. Inaccessibility in
multi-agent systems. final report to Air Force Research Laboratory AFRL/EORD research
contract (FA8655-02-M-4057), 2004.

[9] M. Pěchouček, P. Volf, D. Šǐslák, and Š. Kopřiva. Project extension of the FA8655-06-1-
3073 contract: Final report January 2008. Final report to Air Force Research Laboratory
AFRL/EORD research contract extension, January 2008.

[10] Michal Pěchouček Přemysl Volf, David Šǐslák and Magdalena Prokopová. Convergence of
peer-to-peer collision avoidance among unmanned aerial vehicles. In 2007 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT 2007), pages 377–383, Silicon
Valley, November 2007.

[11] Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of Encounter. The MIT Press, Cambridge,
Massachusetts, 1994.

[12] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Series in
Artificial Intelligence, Englewood Cliffs, New Jersey, 1995.

[13] David Šǐslák, Martin Rehák, Michal Pěchouček, Milan Rollo, and Dušan Pavĺıček. A-globe:
Agent development platform with inaccessibility and mobility support. In Rainer Unland,
Matthias Klusch, and Monique Calisti, editors, Software Agent-Based Applications, Platforms
and Development Kits, pages 21–46, Berlin, 2005. Birkhauser Verlag.

[14] M. Wooldridge, editor. An Introduction to MultiAgent Systems. John Wiley and Sons Ltd,
2002.

[15] Gilad Zlotkin and Jeffrey S. Rosenschein. Negotiation and task sharing among autonomous
agents in cooperative domains. In N. S. Sridharan, editor, Proceedings of the Eleventh In-
ternational Joint Conference on Artificial Intelligence, pages 912–917, San Mateo, CA, 1989.
Morgan Kaufmann.

120

	REPORT DOCUMENTATION PAGE
	Form Approved OMB No. 0704-0188
	11. SPONSOR/MONITOR’S REPORT NUMBER(S)

	AgentFly-final-report-vol2.pdf
	Executive Summary
	Review of Existing Algorithms for Air Traffic Collision Avoidance
	Hill's Algorithm

	Extended Iterative Peer-to-Peer Collision Avoidance Algorithm
	Original Algorithm
	Extension with tendencies
	Extension with Near Misses Optimization

	Theoretical Analysis
	Landing scenario
	Assumptions and Objectives of the Model
	Formal Proof of Convergence
	Estimations and Restrictions
	Limitation of the Shifts.
	Using Global Optimum.
	Different speeds.

	Empirical Analysis
	Pair Collision Analysis
	Landing Scenario Benchmarks
	Perpendicular Flows
	Circles
	Sphere

	Monotonic concession protocol

	AgentFly-final-report-vol1.pdf
	Executive Summary
	Publications
	AGENTFLY Usage Modes
	AGENTFLY Domain Description
	Airspace
	Flight Plan
	Zones Around Asset
	Collision Definition
	Collision Avoidance Problem
	Communication Restrictions

	Flight Simulation
	Flight Execution
	Airplane Model

	Flight Path Planning
	The Path Planning
	Simple Search Manoeuvres
	Combined Search Manoeuvres

	The Time Planning

	AGENTFLY Architecture Overview
	Integration of External Data Sources
	Core System Description
	Server Components for Environment Simulation
	A-globe with UAA Containers
	Plane Agent
	Pilot Agent

	Web-based Access
	Internal Data Layers

	Visualization Component
	Layer Architecture
	Presentation Layers

	Human System Interface
	Mission Management
	Switching the Collision Avoidance Method in Real-Time
	Static No-flight Zones Management

	Multi-layer Collision Avoidance Architecture
	Collision Solver Manager
	Configuration Description
	Configuration Examples

	Cooperative Collision Avoidance
	Local Cooperative Detection
	Transponder Negotiation Task
	Evasion Manoeuvres
	Rule-Based Collision Avoidance
	Iterative Peer-to-Peer Collision Avoidance
	Multi-Party Collision Avoidance
	Interaction of Multi-party groups

	Non-cooperative Collision Avoidance
	NFZ-based Collision Avoidance
	Prediction of the Collision Point
	Dynamic No-flight Zone Shapes

	Optimal Proportional Navigation Algorithm

	Collective Flight
	Group Synchronization
	Synchronization Messages Types
	Group Coordination Algorithm

	Formation Composition And Decomposition
	Formation slots assignment
	Flight Path Planning
	Collision Avoidance during Approach to ASP
	Flight in Formation
	Formation Decomposition

	Experiments
	Cooperative Collision Avoidance
	Rule-based vs. Iterative Peer-to-peer Collision Avoidance
	Iterative Peer-to-peer vs. Multi-party Collision Avoidance
	Iterative peer-to-peer and Multi-party Method in Specific Scenarios

	Non-cooperative Collision Avoidance
	Comparison of No-flight-zones-based Non-Cooperative Deconfliction and Proportional Navigation
	Additional Scenario of Proportional Navigation Failure
	Complex Scenarios of Non-Cooperative Collision Avoidance

	UAA Operation over LA in Real Civil Air-Traffic
	Complex Combat Scenario
	AGENTFLY Prototype Requirements

